30 datasets found
  1. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  2. U.S. top companies in California 2021, by revenue

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. top companies in California 2021, by revenue [Dataset]. https://www.statista.com/statistics/312707/california-s-top-companies-by-revenue/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, Apple was the largest publicly traded company in California based on revenue. That year, they had a revenue of ****** billion U.S. dollars. Alphabet, Chevron, Wells Fargo and Meta rounded out the top five publicly traded companies in California. Apple Apple is a multinational company headquartered in California. It was founded in 1976 by Steve Jobs, Steve Wozniak, and Ronald Wayne. Known for their popular iPhones and Mac computers, they have further expanded into other products such as iPods, Apple Watch, Apple TV, Air Pods, and Apple Pay. It is now one of the world’s largest and most valuable companies. Their worldwide revenue has increased dramatically since 2004, with the largest share of their sales since 2012 coming from the Americas. Despite being one of the most successful technology companies, it has faced a lot of criticism from consumers. Some of the criticisms include tax avoidance, sweatshop use, and environmental destruction. Fortune 500 Companies In 2021, New York and California had the highest number of Fortune 500 companies, followed by Texas, Illinois, and Ohio. For New York, this can be attributed to its being the financial and cultural hub of the country. Fortune 500 Companies are ranked by Fortune magazine, which ranks the the top 500 companies in the United States based on revenue. Companies on this list are both publicly and privately held. The companies that get listed have changed over the years, for a variety of reasons such as company acquisitions, bankruptcies, and changes in the economy.

  3. California High Hazard Zones (Tier 1)

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). California High Hazard Zones (Tier 1) [Dataset]. https://catalog.data.gov/dataset/california-high-hazard-zones-tier-1-e0e1e
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    California
    Description

    On October 30, 2015 Governor Brown issued an emergency declaration requiring public agencies to identify areas of tree mortality that hold the greatest potential to result in wildfire and/or falling trees and threaten people and property in these areas. Once identified, these areas will be prioritized for removal of dead and dying trees that present a threat to public safety. Tier One High Hazard Zones are areas where assets to be protected and tree mortality directly coincide. These are the areas designated by state and local governments as being in greatest need of dead tree removal, pursuant to the California Governor's Emergency proclamation on October 30, 2015. These areas are considered as having the highest potential of being a safety issue to people, buildings and infrastructure. Dead trees heighten wildfire risk and can be hazardous if they fall.This service represents the latest official release of HHZ. It will be updated annually when a new version is released. As of June 2019, it represents HighHazardZones19_1.

  4. a

    Best Airbnb Markets in California, The United States

    • airbtics.com
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Airbtics (2025). Best Airbnb Markets in California, The United States [Dataset]. https://airbtics.com/best-airbnb-markets-california/
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Airbtics
    Time period covered
    Sep 2024 - Aug 2025
    Area covered
    United States, California
    Variables measured
    yield, annualRevenue, occupancyRate, averageDailyRate, numberOfListings, regulationStatus
    Description

    The top 75 Airbnb markets in 2025 are: 1. Los angeles - Strict regulations, 11,250 listings, 67% occupancy rate, $213 daily rate. See other 74 places.

  5. California Ground Squirrel Predicted Habitat - CWHR M072 [ds2530]

    • data-cdfw.opendata.arcgis.com
    • data.cnra.ca.gov
    • +5more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). California Ground Squirrel Predicted Habitat - CWHR M072 [ds2530] [Dataset]. https://data-cdfw.opendata.arcgis.com/content/CDFW::california-ground-squirrel-predicted-habitat-cwhr-m072-ds2530
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  6. Top Five Major Diagnostic Categories (MDCs) for California Hospitals

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). Top Five Major Diagnostic Categories (MDCs) for California Hospitals [Dataset]. https://data.chhs.ca.gov/dataset/top-five-major-diagnostic-categories-mdcs-for-california-hospitals
    Explore at:
    csv(259835), zip, xlsx(9588)Available download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains counts for the Top Five inpatient diagnosis groups based on Major Diagnostic Categories (MDCs) from the Patient Discharge Data (PDD) for each California hospital. Each MDC corresponds to a major organ system (e.g., Respiratory System, Circulatory System, Digestive System) rather than a specific disease (e.g., cancer, sepsis). The MDCs are also generally associated with a particular medical specialty. Therefore, the MDCs can be used to help identify what types of health care specialists are needed at each facility. For instance, a facility with “Circulatory System, Disease and Disorders” as one of their Top Five MDC diagnosis groups is more likely to have a greater need for cardiac specialists. The data will be updated on an annual basis.

  7. K

    California Road and Rail Tunnels

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2018). California Road and Rail Tunnels [Dataset]. https://koordinates.com/layer/96069-california-road-and-rail-tunnels/
    Explore at:
    csv, kml, geodatabase, pdf, geopackage / sqlite, mapinfo tab, mapinfo mif, shapefile, dwgAvailable download formats
    Dataset updated
    Sep 5, 2018
    Dataset authored and provided by
    State of California
    Area covered
    Description

    Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based on the U.S. Department of Transportation's National Bridge Inventory (NBI). Records in the NBI that are attributed as "Tunnels" were extracted by TGS and were located using a combination of ortho imagery, topographic DRGs, NAVTEQ streets, and NAVTEQ railroads. Two points were captured for each tunnel, one at each tunnel opening. A line was then created either by tracing the NAVTEQ street / railroad, or, if there was not a NAVTEQ street / railroad coincident with the tunnel, then by a straight line joining the two points. For some tunnels, the NBI contains two records, one for the road through the tunnel and one for the road on top of the tunnel (if any). In these cases, both have been captured in this dataset. Features in this dataset that are over tunnels have a [RECTYPE] of "1", while features that are in tunnels have a [RECTYPE] of "2". Presumably, this was done because both roads could be blocked if the tunnel was destroyed. In some cases, the NBI only represented a tunnel with a record of type = "1" (over). In these cases, the following rules were applied: 1) If there was no road running through the tunnel, the road on top of the tunnel was captured. For example, if a mine conveyor runs through the tunnel and a county highway runs on top of the tunnel, the county highway was captured. 2) If a road ran through the tunnel, then this road was captured and the [RECTYPE] was changed to "2". The "feature carried" and "feature intersected" fields were also changed to be consistent with the feature actually captured. According to the U.S. DOT: "Our reporting requirements do not extend to tunnels, therefore, any info we have should be considered incomplete."

    © U.S. Department of Transportation's National Bridge Inventory This layer is a component of Road and Rail Tunnels.

    This is a subset of the U.S. Department of Transportation's National Bridge Inventory that depicts tunnels associated with roads and rail lines.

    © U.S. Department of Transportation's National Bridge Inventory

  8. Number of Selected Inpatient Medical Procedures in California Hospitals

    • data.chhs.ca.gov
    • caprod.ogopendata.com
    • +4more
    csv, pdf, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). Number of Selected Inpatient Medical Procedures in California Hospitals [Dataset]. https://data.chhs.ca.gov/dataset/number-of-selected-inpatient-medical-procedures-in-california-hospitals
    Explore at:
    zip, pdf, pdf(881197), csv, pdf(879415), pdf(88328), csv(940119)Available download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    This dataset contains the number (volume) of 6 selected inpatient procedures (Esophageal Resection, Pancreatic Resection, Abdominal Aortic Aneurysm Repairs (AAA Repairs), Carotid Endarterectomy, Coronary Artery Bypass Graft Surgery, Percutaneous Coronary Intervention) performed in California hospitals. Data are reported for January – September 2015 due to coding changes from ICD-9-CM to ICD-10-CM/PCS for procedures, which began 10/1/2015. Comparisons across years should be made with caution since other years’ results are based on 12 months of data, while 2015 analysis is based on 9 months of data. The data starting 2015 may differ from previous years due to the coding change. This dataset does not include procedures performed in outpatient settings.

  9. d

    DWSAP Assessment for 5610018-006: VENTURA CWWD NO. 1 - MOORPARK / WELL 96

    • search.dataone.org
    Updated Sep 14, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ventura County (2013). DWSAP Assessment for 5610018-006: VENTURA CWWD NO. 1 - MOORPARK / WELL 96 [Dataset]. http://identifiers.org/ark:/13030/m5sj1kbx/2/cadwsap-s5610018-006.xml
    Explore at:
    Dataset updated
    Sep 14, 2013
    Dataset provided by
    Merritt Repository
    Authors
    Ventura County
    Area covered
    Description

    A source water assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide the basic information necessary for a local community to develop a program to protect the drinking water supply.

  10. COVID-19 Outbreak Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Outbreak Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-outbreak-data
    Explore at:
    zip, csv(62919), csv(326192)Available download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated as of June 2, 2025.

    This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.

    AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.

    LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.

    The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.

    While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.

    Several additional data limitations should be kept in mind:

    • Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.

    • Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.

    • However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.

    • Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.

    • The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.

  11. Annual cost of living in top 10 largest U.S. cities in 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Annual cost of living in top 10 largest U.S. cities in 2024 [Dataset]. https://www.statista.com/statistics/643471/cost-of-living-in-10-largest-cities-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.

  12. Number of registered automobiles in California 2018

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Number of registered automobiles in California 2018 [Dataset]. https://www.statista.com/statistics/196024/number-of-registered-automobiles-in-california/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    California, United States
    Description

    The statistic represents the number of registered automobiles in California in 2018. In 2018, there was a total number of approximately 15.1 million automobiles registered in California.

    Automobile registrations in California

    In case you have ever asked yourself one of these questions: ‘How many cars are there in California?’ or ‘How many registered vehicles are there in California?’, we can tell you as much: In 2018, there were 15.1 million automobiles registered in California. Furthermore – as you might have wondered if other motor vehicles are registered in this state, as well - Californians used around 99,700 buses and coaches, over 15 million trucks and roughly 882,800 motorcycles in 2018, making California the leading federal state in all motor vehicle segments.

  13. California Red-legged Frog Predicted Habitat - CWHR A071 [ds2025]

    • data-cdfw.opendata.arcgis.com
    • data.ca.gov
    • +4more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). California Red-legged Frog Predicted Habitat - CWHR A071 [ds2025] [Dataset]. https://data-cdfw.opendata.arcgis.com/content/CDFW::california-red-legged-frog-predicted-habitat-cwhr-a071-ds2025
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  14. a

    Jurisdiction in Santa Monica Mountains

    • santa-monica-mountains-defensible-space-uscssi.hub.arcgis.com
    Updated Apr 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2022). Jurisdiction in Santa Monica Mountains [Dataset]. https://santa-monica-mountains-defensible-space-uscssi.hub.arcgis.com/items/a7b06b425cf44f899ddc1f9fc976b5cb
    Explore at:
    Dataset updated
    Apr 18, 2022
    Dataset authored and provided by
    Spatial Sciences Institute
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This is SCAG's 2019 Annual Land Use (ALU v. 2019.1) at the parcel-level, updated as of February 2021. This dataset has been modified to include additional attributes in order to feed SCAG's Housing Element Parcel Tool (HELPR), version 2.0. The dataset will be further reviewed and updated as additional information is released. Please refer to the tables below for data dictionary and SCAG’s land use classification. Field Name Data TypeField DescriptionPID19Text2019 SCAG’s parcel unique IDAPN19Text2019 Assessor’s parcel numberCOUNTYTextCounty name (based on 2016 county boundary)COUNTY_IDDoubleCounty FIPS code (based on 2016 county boundary)CITYTextCity name (based on 2016 city boundary)CITY_IDDoubleCity FIPS code (based on 2016 city boundary)MULTIPARTShort IntegerMultipart feature (the number of multiple polygons; '1' = singlepart feature)STACKLong IntegerDuplicate geometry (the number of duplicate polygons; '0' = no duplicate polygons)ACRESDoubleParcel area (in acreage)GEOID20Text2020 Census Block Group GEOIDSLOPEShort IntegerSlope information1APN_DUPLong IntegerDuplicate APN (the number of multiple tax roll property records; '0' = no duplicate APN)IL_RATIODoubleRatio of improvement assessed value to land assessed valueLU19Text2019 existing land useLU19_SRCTextSource of 2019 existing land use2SCAGUID16Text2016 SCAG’s parcel unique IDAPNText2016 Assessor’s parcel numberCITY_GP_COText2016 Jurisdiction’s general plan land use designationSCAG_GP_COText2016 SCAG general plan land use codeSP_INDEXShort IntegerSpecific plan index ('0' = outside specific plan area; '1' = inside specific plan area)CITY_SP_COText2016 Jurisdiction’s specific plan land use designationSCAG_SP_COText2016 SCAG specific plan land use codeCITY_ZN_COText2016 Jurisdiction’s zoning codeSCAG_ZN_COText2016 SCAG zoning codeLU16Text2016 existing land useYEARLong IntegerDataset yearPUB_OWNShort IntegerPublic-owned land index ('1' = owned by public agency)PUB_NAMETextName of public agencyPUB_TYPETextType of public agency3BF_SQFTDoubleBuilding footprint area (in square feet)4BSF_NAMETextName of brownfield/superfund site5BSF_TYPETextType of brownfield/superfund site5FIREShort IntegerParcel intersects CalFire Very High Hazard Local Responsibility Areas or State Responsibility Areas (November 2020 version) (CalFIRE)SEARISE36Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)1 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)SEARISE72Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)2 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)FLOODShort IntegerParcel intersects with a FEMA 100 Year Flood Plain data from the Digital Flood Insurance Rate Map (DFIRM), obtained from Federal Emergency Management Agency (FEMA) in August 10, 2017EQUAKEShort IntegerParcel intersects with an Alquist-Priolo Earthquake Fault Zone (California Geological Survey; 2018) LIQUAFAShort IntegerParcel intersects with a Liquefaction Susceptibility Zone (California Geological Survey; 2016)LANDSLIDEShort IntegerParcel intersects with a Landslide Hazard Zone (California Geological Survey; 2016)CPADShort IntegerParcel intersects with a protected area from the California Protected Areas Database(CPAD) – www.calands.org (accessed April 2021)RIPARIANShort IntegerParcel centroid falls within Active River Areas(2010)or parcel intersects with a Wetland Area in the National Wetland Inventory(Version 2)WILDLIFEShort IntegerParcel intersects with wildlife habitat (US Fish & Wildlife ServiceCritical Habitat, Southern California Missing Linkages, Natural Lands & Habitat Corridors from Connect SoCal, CEHC Essential Connectivity Areas,Critical Coastal Habitats)CNDDBShort IntegerThe California Natural Diversity Database (CNDDB)includes the status and locations of rare plants and animals in California. Parcels that overlap locations of rare plants and animals in California from the California Natural Diversity Database (CNDDB)have a greater likelihood of encountering special status plants and animals on the property, potentially leading to further legal requirements to allow development (California Department of Fish and Wildlife). Data accessed in October 2020. HCPRAShort IntegerParcel intersects Natural Community & Habitat Conservation Plans Reserve Designs from the Western Riverside MHSCP, Coachella Valley MHSCP, and the Orange County Central Coastal NCCP/HCP, as accessed in October 2020WETLANDShort IntegerParcel intersects a wetland or deepwater habitat as defined by the US Fish & Wildlife Service National Wetlands Inventory, Version 2. UAZShort IntegerParcel centroid lies within a Caltrans Adjusted Urbanized AreasUNBUILT_SFDoubleDifference between parcel area and building footprint area expressed in square feet.6GRCRY_1MIShort IntegerThe number of grocery stores within a 1-mile drive7HEALTH_1MIShort IntegerThe number of healthcare facilities within a 1-mile drive7OPENSP_1MIShort IntegerQuantity of open space (roughly corresponding to city blocks’ worth) within a 1-mile drive7TCAC_2021TextThe opportunity level based on the 2021 CA HCD/TCAC opportunity scores.HQTA45Short IntegerField takes a value of 1 if parcel centroid lies within a 2045 High-Quality Transit Area (HQTA)JOB_CTRShort IntegerField takes a value of 1 if parcel centroid lies within a job centerNMAShort IntegerField takes a value of 1 if parcel centroid lies within a neighborhood mobility area. ABS_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within an absolute constraint area. See the Sustainable Communities Strategy Technical Reportfor details.VAR_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within a variable constraint area. See the Sustainable Communities Strategy Technical Reportfor details.EJAShort IntegerField takes a value of 1 if parcel centroid lies within an Environmental Justice Area. See the Environmental Justice Technical Reportfor details.SB535Short IntegerField takes a value of 1 if parcel centroid lies within an SB535 Disadvantaged Community area. See the Environmental Justice Technical Reportfor details.COCShort IntegerField takes a value of 1 if parcel centroid lies within a Community of Concern See the Environmental Justice Technical Reportfor details.STATEShort IntegerThis field is a rudimentary estimate of which parcels have adequate physical space to accommodate a typical detached Accessory Dwelling Unit (ADU)8. SBShort IntegerIndex of ADU eligibility according to the setback reduction policy scenario (from 4 to 2 feet) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SMShort IntegerIndex of ADU eligibility according to the small ADU policy scenario (from 800 to 600 square feet ADU) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)PKShort IntegerIndex of ADU eligibility according to parking space exemption (200 square feet) policy scenario (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SMShort IntegerIndex of ADU eligibility according to both the setback reduction and small ADU policy scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_PKShort IntegerIndex of ADU eligibility according to both the setback reduction and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SM_PKShort IntegerIndex of ADU eligibility according to both the small ADU policy and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SM_PKShort IntegerIndex of ADU eligibility according to the setback reduction, small ADU, and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)1. Slope: '0' - 0~4 percent; '5' - 5~9 percent; '10' - 10~14 percent; '15' = 15~19 percent; '20' - 20~24 percent; '25' = 25 percent or greater.2. Source of 2019 existing land use: SCAG_REF- SCAG's regional geospatial datasets;ASSESSOR- Assessor's 2019 tax roll records; CPAD- California Protected Areas Database (version 2020a; accessed in September 2020); CSCD- California School Campus Database (version 2018; accessed in September 2020); FMMP- Farmland Mapping and Monitoring Program's Important Farmland GIS data (accessed in September 2020); MIRTA- U.S. Department of Defense's Military Installations, Ranges, and Training Areas GIS data (accessed in September 2020)3. Type of public agency includes federal, state, county, city, special district, school district, college/university, military.4. Based on 2019 building footprint data obtained from BuildingFootprintUSA (except that 2014 building footprint data was used for Imperial County). Please note that 2019 building footprint data does not cover the entire SCAG region (overlapped with 83% of parcels in the SCAG Region).5. Includes brownfield/superfund site whose address information are matched by SCAG rooftop address locator. Brownfield data was obtained from EPA's Assessment, Cleanup and Redevelopment Exchange System (ACRES) database, Cleanups in my community (CIMC), DTSC brownfield Memorandum of Agreement (MOA). Superfund site data was obtained from EPA's Superfund Enterprise Management System (SEMS) database.6. Parcels with a zero value for building footprint area are marked as NULL to indicate this field is not reliable.7. These values are intended as a rudimentary indicator of accessibility developed by SCAG using 2016 InfoUSA business establishment data and 2017 California Protected Areas data. See documentation for details.8. A detailed study conducted by Cal Poly Pomona (CPP) and available hereconducted an extensive review of state and local requirements and development trends for ADUs in the SCAG region and developed a baseline set of assumptions for estimating how many of a jurisdiction’s parcels could accommodate a detached ADU. Please note that these estimates (1) do not include attached or other types of ADUs such as garage conversions or Junior ADUs, and (2)

  15. d

    Data from: Compilation of Public-Supply Well Construction Depths in...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Compilation of Public-Supply Well Construction Depths in California [Dataset]. https://catalog.data.gov/dataset/compilation-of-public-supply-well-construction-depths-in-california
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    This data release is a compilation of construction depth information for 12,383 active and inactive public-supply wells (PSWs) in California from various data sources. Construction data from multiple sources were indexed by the California State Water Resources Control Board Division of Drinking Water (DDW) primary station code (PS Code). Five different data sources were compared with the following priority order: 1, Local sources from select municipalities and water purveyors (Local); 2, Local DDW district data (DDW); 3, The United States Geological Survey (USGS) National Water Information System (NWIS); 4, The California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment Groundwater Information System (SWRCB); and 5, USGS attribution of California Department of Water Resources well completion report data (WCR). For all data sources, the uppermost depth to the well's open or perforated interval was attributed as depth to top of perforations (ToP). The composite depth to bottom of well (Composite BOT) field was attributed from available construction data in the following priority order: 1, Depth to bottom of perforations (BoP); 2, Depth of completed well (Well Depth); 3; Borehole depth (Hole Depth). PSW ToPs and Composite BOTs from each of the five data sources were then compared and summary construction depths for both fields were selected for wells with multiple data sources according to the data-source priority order listed above. Case-by-case modifications to the final selected summary construction depths were made after priority order-based selection to ensure internal logical consistency (for example, ToP must not exceed Composite BOT). This data release contains eight tab-delimited text files. WellConstructionSourceData_Local.txt contains well construction-depth data, Composite BOT data-source attribution, and local agency data-source attribution for the Local data. WellConstructionSourceData_DDW.txt contains well construction-depth data and Composite BOT data-source attribution for the DDW data. WellConstructionSourceData_NWIS.txt contains well construction-depth data, Composite BOT data-source attribution, and USGS site identifiers for the NWIS data. WellConstructionSourceData_SWRCB.txt contains well construction-depth data and Composite BOT data-source attribution for the SWRCB data. WellConstructionSourceData_WCR.txt contains contains well construction depth data and Composite BOT data-source attribution for the WCR data. WellConstructionCompilation_ToP.txt contains all ToP data listed by data source. WellConstructionCompilation_BOT.txt contains all Composite BOT data listed by data source. WellConstructionCompilation_Summary.txt contains summary ToP and Composite BOT values for each well with data-source attribution for both construction fields. All construction depths are in units of feet below land surface and are reported to the nearest foot.

  16. California Gnatcatcher Predicted Habitat - CWHR B553 [ds2363]

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). California Gnatcatcher Predicted Habitat - CWHR B553 [ds2363] [Dataset]. https://catalog.data.gov/dataset/california-gnatcatcher-predicted-habitat-cwhr-b553-ds2363-116d9
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  17. California Myotis Predicted Habitat - CWHR M028 [ds2487]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). California Myotis Predicted Habitat - CWHR M028 [ds2487] [Dataset]. https://catalog.data.gov/dataset/california-myotis-predicted-habitat-cwhr-m028-ds2487-6cd86
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  18. 2014 06: Top 10 Fastest Growing Cities in California

    • opendata.mtc.ca.gov
    Updated Jun 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2014). 2014 06: Top 10 Fastest Growing Cities in California [Dataset]. https://opendata.mtc.ca.gov/documents/8041b19de8cf424bb779d42d70221680
    Explore at:
    Dataset updated
    Jun 25, 2014
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    California
    Description

    According to population estimates recently released by the California Department of Housing and Community Development, the San Francisco Bay Region is the fastest growing region in the state.San Jose, followed by San Francisco and Oakland have the highest populations in the region, and three bay area cities made the top 10 ranking. In addition, our region also has 4 counties; Santa Clara (1), Alameda (2), San Francisco (5) and San Mateo (9), in the top 10 fastest growing counties. Dublin (3), Campbell (7) and Rio Vista (8) each had a significant percentage change in their population growth. The state data reports population and housing trends for 482 California cities. Last year, all but 43 cities saw an increase in residents, with the declines typically experienced in the state's rural areas.

  19. California Vole Predicted Habitat - CWHR M134 [ds2588]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). California Vole Predicted Habitat - CWHR M134 [ds2588] [Dataset]. https://catalog.data.gov/dataset/california-vole-predicted-habitat-cwhr-m134-ds2588-985a3
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Area covered
    California
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  20. California's National Electric Vehicle Infrastructure Funding Program Map

    • data.ca.gov
    • data.cnra.ca.gov
    • +1more
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). California's National Electric Vehicle Infrastructure Funding Program Map [Dataset]. https://data.ca.gov/dataset/californias-national-electric-vehicle-infrastructure-funding-program-map
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    The California Department of Transportation (Caltrans) and the California Energy Commission (CEC) are partnering to implement the federal National Electric Vehicle Infrastructure (NEVI) Program, which allocates $5 billion to the states to create a nationwide, interconnected network of DC fast chargers along the National Highway Systems. California's share will be $384 million over 5 years. This map was developed to help prospective applicants and interested parties identify eligible areas for infrastructure deployment.


    Instructions

    Viewers can display Alternative Fuel Corridors, NEVI 2 (GFO-24-606) corridor groups and corridor segments, NEVI 1 (GFO-23-601) corridor groups, electric vehicle (EV) charging stations, Tribal lands, California-designated low-income or disadvantaged communities, metropolitan planning organizations, regional transportation planning agencies, California state legislative districts, counties, Caltrans districts, utility districts, and congressional districts in this interactive map. The map initially displays the corridor groups and corridor segments eligible for California's Round 2 NEVI solicitation. Viewers can toggle individual layers on and off using the map layers menu located to the right of the map. Some layers are organized into groups; viewers can toggle all layers within a group or select specific ones. The legend to the left of the map will show the layers that have been turned on. There is a search tool to the right of the map that enables viewers to type in an address and locate the address on the map. A basemap selector allows viewers to view road detail. Additional information on the map can be found under the information icon. Viewers can download the map files by clicking on the Data and Supplemental Links icon.


    Map layers include:

    • An Alternative Fuel Corridors layer that shows designated corridors for California's NEVI funding program. Users can click on a corridor segment to view the start and end of each corridor. When selected, a pop-up window will appear that shows the corridor name and description.
    • A NEVI 2 (GFO-24-606) corridor groups layer shows corridor groups eligible for Round 2 of California's NEVI funding program. Note that this layer is only visible when the Alternative Fuels Corridors layer is turned off.
    • NEVI 2 (GFO-24-606) corridor group labels for enhanced accessibility. Note that labels are only visible at certain ranges (zoom in and out to view labels) and when the Alternative Fuels Corridors layer is turned off.
    • NEVI 2 (GFO-24-606) corridor segment labels for enhanced accessibility. Note that labels are only visible at certain ranges (zoom in and out to view labels) and when the Alternative Fuels Corridors layer is turned off.
    • A NEVI 1 (GFO-23-601) corridor groups layer that shows corridor groups eligible for Round 1 of California's NEVI funding program. Note that this layer is only visible when the Alternative Fuels Corridors layer is turned off.
    • A layer showing the locations of EV charging stations awarded through Round 1 of California's NEVI funding program that are planned for deployment.
    • A layer showing California-designated disadvantaged or low-income communities.
    • A layer showing California Federally Recognized Tribal Lands.
    • A layer showing Metropolitan Planning Organizations.
    • A layer showing Regional Transportation Planning Agencies.
    • A layer showing California State Senate Districts.
    • A layer showing California State Assembly Districts.
    • A layer showing California Counties.
    • EV charging stations layers (existing DC fast charging stations that are located within one mile of a NEVI-eligible corridor offramp). One layer shows locations of EV charging stations with DC fast charging capabilities that meet the NEVI power level and four-port minimum requirement and could likely become part of the NEVI network if these stations became compliant with other NEVI program requirements such as data reporting. The other layer shows DC fast charging stations that do not meet NEVI power-level or port count requirements but could be upgraded to be NEVI-compliant. Users can click on EV charging stations and a pop-up window will appear with more information on the station (i.e., station address, total port count, minimum NEVI standard, etc.). These data were last updated in March 2024. Please refer to the Department of Energy's Alternative Fuels Data Center and PlugShare for up-to-date existing and planned DC fast charger site information.
    • A layer showing Caltrans Districts.
    • A layer showing Electric Utilities (IOUs and POUs).
    • A layer showing California Congressional Districts.

    Background

    The $5 billion NEVI Program is part of the $1.2 trillion Infrastructure Investment and Jobs Act (IIJA) signed into law by President Biden in November 2021. IIJA commits significant federal funding to clean transportation and energy programs throughout the U.S. to reduce climate changing greenhouse gas emissions. Caltrans is the designated lead agency for NEVI. The CEC is their designated state energy partner. Caltrans and the CEC have partnered to create California's Deployment Plan for the National Electric Vehicle Infrastructure Program that describes how the state plans to allocate its $384 million share of federal NEVI funds to build out a network of modern, high-powered DC fast chargers along federally designated Alternative Fuel Corridors throughout California. California's latest NEVI Deployment Plan was submitted to the Joint Office of Energy and Transportation on August 1, 2023 and approved on September 29, 2023. The Plans must be updated each year over 5 years.


    <p style='margin-top:0px; margin-bottom:0px; box-sizing:border-box; padding:0px; color:rgb(5, 5, 5);

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
Organization logo

Most populated cities in the U.S. - median household income 2022

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
United States
Description

In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

Search
Clear search
Close search
Google apps
Main menu