According to a ranking of the best hospitals in the U.S., the best hospital for adult cancer is the University of *******************************, which had a score of *** out of 100, as of 2025. This statistic shows the top 10 hospitals for adult cancer in the United States based on the score given by U.S. News and World Report's annual hospital ranking.
Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
This is a linked dataset between drinking water data and cancer data. Drinking Water Data: County-level concentrations of arsenic from CWSs between 2000 and 2010 were collected from the Center for Disease Control and Prevention’s (CDC) National Environmental Public Health Tracking Network (NEPHTN) (Centers for Disease Control and Prevention, 2018a). Annual mean drinking water arsenic concentrations from 2000 to 2010 were available for a total of 87,662 samples from 75,453 CWS from 26 states, representing 1,425 counties. For samples identified as non-detects, the most frequently reported values were 0.5 ppb and 1 ppb, with a range of 0 ppb to 10 ppb. For non-detect samples reported as zero, the value was substituted with a constant of 0.25 ppb (Almberg et al., 2017; Bulka et al., 2016). Of the samples that were reported as non-detects, 10.87% were reported as zeros. Cancer Data: County-level cancer counts and incidence rates for bladder, colorectal, and kidney cancers were acquired from the National Cancer Institute (NCI) and CDC’s State Cancer Profiles for 2011 through 2015 for adults (age ≥ 50) to match the counties with exposure data (National Cancer Institute and Centers for Disease Control and Prevention, 2018a). We utilized the time period 2011-2015 to provide a lag following the exposure period of 2000-2010. The State Cancer Profiles provide age-adjusted county-level cancer incidence, prevalence, mortality rates and average annual counts for 20 different types of cancers and select demographics (National Cancer Institute and Centers for Disease Control and Prevention, 2018b). Counties where there were less than 16 reported cases in a specific county, sex, and/or race category were suppressed to ensure confidentiality and stability of rate estimates (National Cancer Institute and Centers for Disease Control and Prevention, 2018a). This dataset is associated with the following publication: Krajewski, A., M. Jimenez, K. Rappazzo, D. Lobdell, and J. Jagai. Aggregated Cumulative County Arsenic in Drinking Water and Associations with Bladder, Colorectal, and Kidney Cancers, Accounting for Population Served. Journal of Exposure Science and Environmental Epidemiology. Nature Publishing Group, London, UK, 31(6): 979-989, (2021).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ContextResearch-oriented cancer hospitals in the United States treat and study patients with a range of diseases. Measures of disease specific research productivity, and comparison to overall productivity, are currently lacking.HypothesisDifferent institutions are specialized in research of particular diseases.ObjectiveTo report disease specific productivity of American cancer hospitals, and propose a summary measure.MethodWe conducted a retrospective observational survey of the 50 highest ranked cancer hospitals in the 2013 US News and World Report rankings. We performed an automated search of PubMed and Clinicaltrials.gov for published reports and registrations of clinical trials (respectively) addressing specific cancers between 2008 and 2013. We calculated the summed impact factor for the publications. We generated a summary measure of productivity based on the number of Phase II clinical trials registered and the impact factor of Phase II clinical trials published for each institution and disease pair. We generated rankings based on this summary measure.ResultsWe identified 6076 registered trials and 6516 published trials with a combined impact factor of 44280.4, involving 32 different diseases over the 50 institutions. Using a summary measure based on registered and published clinical trails, we ranked institutions in specific diseases. As expected, different institutions were highly ranked in disease-specific productivity for different diseases. 43 institutions appeared in the top 10 ranks for at least 1 disease (vs 10 in the overall list), while 6 different institutions were ranked number 1 in at least 1 disease (vs 1 in the overall list).ConclusionResearch productivity varies considerably among the sample. Overall cancer productivity conceals great variation between diseases. Disease specific rankings identify sites of high academic productivity, which may be of interest to physicians, patients and researchers.
In 2021, the death rate for cancer among youth in the United States aged 0 to 19 years was 2.1 per 100,000 youth. This was a decrease from the death rate of 2.75 per 100,000 recorded in the year 2001. This statistic shows the cancer death rates among youth aged 0 to 19 years in the United States from 2001 to 2021, by gender.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.
In the United States, the leading causes of death among women are heart disease and cancer. Heart disease and cancer are similarly the leading causes of death among U.S. men. In 2023, heart disease accounted for 20.7 percent of all deaths among women in the United States, while cancer accounted for 19.8 percent of deaths. COVID-19 was the third leading cause of death among women in 2020 and 2021, and the fourth leading cause in 2022, however, by 2023 it had dropped to ninth place. Cancer among women in the U.S. The most common types of cancer among U.S. women are breast, lung and bronchus, and colon and rectum. In 2025, there were around 316,950 new breast cancer cases among women, compared to 115,970 new cases of lung and bronchus cancer. Although breast cancer is the most common form of cancer among women in the United States, lung and bronchus cancer causes the highest number of cancer deaths. In 2025, around 60,540 women were expected to die from lung and bronchus cancer, compared to 42,170 from breast cancer. Breast cancer Although breast cancer is the second most deadly form of cancer among women, rates of death have decreased over the past few decades. This decrease is possibly due to early detection, progress in therapy, and increasing awareness of risk factors. In 2023, the death rate due to breast cancer was 18.6 per 100,000 population, compared to a rate of 33.3 per 100,000 in the year 1990. The state with the highest rate of deaths due to breast cancer is Oklahoma, while South Dakota had the lowest rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: For carbon tetrachloride, we applied the average DALYs for different types of cancers of 8.5 years, since available information does not provide DALY per case estimate for this type of cancer.Disability adjusted life years (DALY) per cancer case corresponding to the cancer type for the 10 air toxics with the highest national average cancer risks.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of cancer incidence data in Australia for all cancers combined, and six selected cancers (female breast cancer, colorectal cancer, cervical cancer, lung cancer, melanoma of the skin, and prostate cancer) with their respective ICD-10 codes. The data spans the years 2009 to 2013 and is aggregated to Statistical Area Level 3 (SA3) geographic areas from the 2011 Australian Statistical Geography Standard (ASGS). The source of the incidence data is the 2014 Australian Cancer Database (ACD). The ACD is compiled by the Australian Institute of Health and Wellbeing (AIHW) from data provided by the state and territory population-based cancer registries. For further information about this dataset, please visit: AIHW - Cancer Incidence and Mortality in Australia Data Tables 2014 Australian Cancer Database Data Quality Statement Please note: AURIN has spatially enabled the original data. Where records are null, data was not publishable because of small numbers, confidentiality or other concerns about the quality of the data.
In 2023, there were **** deaths from breast cancer per 100,000 population in the state of South Dakota, the lowest of any state that year. This statistic shows the death rate from breast cancer in the U.S. in 2023, by state.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined and the 5 top cancer groupings (breast - female only, colorectal, lung, melanoma of the skin and prostate) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to Statistical Area Level 3 (SA3) from the 2011 Australian Statistical Geography Standard (ASGS).
Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD).
For further information about this dataset, please visit:
Please note:
AURIN has spatially enabled the original data.
Due to changes in geographic classifications over time, long-term trends are not available.
Values assigned to "n.p." in the original data have been removed from the data.
The Australian and jurisdictional totals include people who could not be assigned a SA3. The number of people who could not be assigned a SA3 is less than 1% of the total.
The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).
The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries.
The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards.
Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD.
This dataset presents the footprint of male cancer incidence statistics in Australia for all cancers combined and the 11 top cancer groupings (bladder, colorectal, head and neck, kidney, leukaemia, …Show full descriptionThis dataset presents the footprint of male cancer incidence statistics in Australia for all cancers combined and the 11 top cancer groupings (bladder, colorectal, head and neck, kidney, leukaemia, lung, lymphoma, melanoma of the skin, pancreas, prostate and stomach) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to Statistical Area Level 4 (SA4) from the 2011 Australian Statistical Geography Standard (ASGS). Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD). For further information about this dataset, please visit: Australian Institute of Health and Welfare - Cancer Incidence and Mortality Across Regions (CIMAR) books. Australian Cancer Database 2012 Data Quality Statement. Please note: AURIN has spatially enabled the original data. Due to changes in geographic classifications over time, long-term trends are not available. Values assigned to "n.p." in the original data have been removed from the data. The Australian and jurisdictional totals include people who could not be assigned an SA4 category. The number of people who could not be assigned an SA4 category is less than 1% of the total. The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory). The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries. The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards. Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD. Copyright attribution: Government of the Commonwealth of Australia - Australian Institute of Health and Welfare, (2016): ; accessed from AURIN on 12/3/2020. Licence type: Creative Commons Attribution 3.0 Australia (CC BY 3.0 AU)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined and the 6 top cancer groupings (colorectal, leukaemia, lung, lymphoma, melanoma of the skin and pancreas) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to 2015 Department of Health Primary Health Network (PHN) areas, based on the 2011 Australian Statistical Geography Standard (ASGS).
Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD).
For further information about this dataset, please visit:
Please note:
AURIN has spatially enabled the original data using the Department of Health - PHN Areas.
Due to changes in geographic classifications over time, long-term trends are not available.
Values assigned to "n.p." in the original data have been removed from the data.
The Australian and jurisdictional totals include people who could not be assigned a PHN. The number of people who could not be assigned a PHN is less than 1% of the total.
The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).
The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries.
The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards.
Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD.
Rate: Number of deaths due to prostate cancer per 100,000 male population.
Definition: Number of deaths per 100,000 males with malignant neoplasm (cancer) of the prostate as the underlying cause of death (ICD-10 code: C61).
Data Sources:
(1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
(2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
(3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset, released September 2017, contains data on the female cancer incidences during 2006-2010 by Breast cancer, Colorectal Cancer, Melanoma of the skin, Lung cancer, Uterine cancer, Lymphoma cancer, Leukaemia cancer, Thyroid cancer, Ovarian cancer, Pancreatic cancer, All other cancers and All cancers combined. The data is by Local Government Area (LGA) 2016 geographic boundaries. For more information please see the data source notes on the data. Source: Compiled by PHIDU from an analysis by the Australian Institute of Health and Welfare (AIHW) of theAustralian Cancer Database (ACD) 2012. The ACD is compiled at the AIHW from cancer data provided by state andterritory cancer registries. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of male cancer incidence statistics in Australia for all cancers combined and the 11 top cancer groupings (bladder, colorectal, head and neck, kidney, leukaemia, lung, lymphoma, melanoma of the skin, pancreas, prostate and stomach) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to 2015 Department of Health Primary Health Network (PHN) areas, based on the 2011 Australian Statistical Geography Standard (ASGS).
Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD).
For further information about this dataset, please visit:
Please note:
AURIN has spatially enabled the original data using the Department of Health - PHN Areas.
Due to changes in geographic classifications over time, long-term trends are not available.
Values assigned to "n.p." in the original data have been removed from the data.
The Australian and jurisdictional totals include people who could not be assigned a PHN. The number of people who could not be assigned a PHN is less than 1% of the total.
The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).
The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries.
The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards.
Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Five- and 10-year survival rates in the patients with lung or bronchial cancer by ethnic group.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset, released September 2017, contains data on the male cancer incidences during 2006-2010 by Prostate cancer, Colorectal Cancer, Melanoma of the skin, Lung cancer, Head and neck cancer, Lymphoma cancer, Leukaemia cancer, Bladder cancer, Kidney cancer, Pancreatic cancer, Stomach cancer, All other cancers and All cancers combined. The data is by Local Government Area (LGA) 2016 geographic boundaries. For more information please see the data source notes on the data. Source: Compiled by PHIDU from an analysis by the Australian Institute of Health and Welfare (AIHW) of theAustralian Cancer Database (ACD) 2012. The ACD is compiled at the AIHW from cancer data provided by state andterritory cancer registries. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.
This dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined. The data spans the years 2006-2010 and is aggregated to the 2011 Public Health Information …Show full descriptionThis dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined. The data spans the years 2006-2010 and is aggregated to the 2011 Public Health Information Development Unit (PHIDU) Population Health Areas (PHA), based on the 2011 Australian Statistical Geography Standard (ASGS). Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD). For further information about this dataset, please visit: Australian Institute of Health and Welfare - Cancer Incidence and Mortality Across Regions (CIMAR) books. Australian Cancer Database 2012 Data Quality Statement. Please note: AURIN has spatially enabled the original data using the PHIDU - PHAs. Due to changes in geographic classifications over time, long-term trends are not available. Values assigned to "n.p." in the original data have been removed from the data. The Australian and jurisdictional totals include people who could not be assigned to a PHA. The number of people who could not be assigned a PHA is less than 1% of the total. The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory). The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries. The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards. Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD. Copyright attribution: Government of the Commonwealth of Australia - Australian Institute of Health and Welfare, (2016): ; accessed from AURIN on 12/3/2020. Licence type: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia (CC BY-NC-SA 3.0 AU)
According to a ranking of the best hospitals in the U.S., the best hospital for adult cancer is the University of *******************************, which had a score of *** out of 100, as of 2025. This statistic shows the top 10 hospitals for adult cancer in the United States based on the score given by U.S. News and World Report's annual hospital ranking.