In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
Among the top 100 referring websites to Amazon in the United States, the majority of the traffic directed to Amazon came from news and media websites during Amazon Prime Days in 2019 and 2020. While directed traffic from both news and media websites and other sites stayed the same across the last two Amazon Prime Day events, share of traffic coming to Amazon from coupon and rebate websites saw an increase in October 2020 and reached to 16 percent, marking an increase of four percent from July 2019.
In November 2024, Google.com was the most popular website worldwide with approximately 6.25 billion unique monthly visitors. YouTube.com was ranked second with an estimated 3.64 billion unique monthly visitors. Both websites are among the most visited websites worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.
From September to November 2023, search platform Google.com was the top ranking website in Canada, with average monthly traffic of almost four billion visits. YouTube ranked second with almost three billion visits. Social network Facebook.com ranked third, with total monthly traffic of 470 million visits.
In November 2024, Google.com was the most visited website in the United States, with over 25 billion total visits. YouTube.com came in second with 12 billion total visits. Reddit.com and Amazon.com counted approximately 3.12 billion and 2.89 monthly visits each from U.S. online audiences.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We present a dataset targeting a large set of popular pages (Alexa top-500), from probes from several ISPs networks, browsers software (Chrome, Firefox) and viewport combinations, for over 200,000 experiments realized in 2019.We purposely collect two distinct sets with two different tools, namely Web Page Test (WPT) and Web View (WV), varying a number of relevant parameters and conditions, for a total of 200K+ web sessions, roughly equally split among WV and WPT. Our dataset comprises variations in terms of geographical coverage, scale, diversity and representativeness (location, targets, protocol, browser, viewports, metrics).For Web Page Test, we used the online service www.webpagetest.org at different locations worldwide (Europe, Asia, USA) and private WPT instances in three locations in China (Beijing, Shanghai, Dongguan). The list of target URLs comprised the main pages and five random subpages from Alexa top-500 worldwide and China. We varied network conditions : native connections and 4G, FIOS, 3GFast, DSL, and custom shaping/loss conditions. The other elements in the configuration were fixed: Chrome browser on desktop with a fixed screen resolution, HTTP/2 protocol and IPv4.For Web View, we collected experiments from three machines located in France. We selected two versions of two browser families (Chrome 75/77, Firefox 63/68), two screen sizes (1920x1080, 1440x900), and employ different browser configurations (one half of the experiments activate the AdBlock plugin) from two different access technologies (fiber and ADSL). From a protocol standpoint, we used both IPv4 and IPv6, with HTTP/2 and QUIC, and performed repeated experiments with cached objects/DNS. Given the settings diversity, we restricted the number of websites to about 50 among the Alexa top-500 websites, to ensure statistical relevance of the collected samples for each page.The two archives IFIPNetworking2020_WebViewOrange.zip
and IFIPNetworking2020_Webpagetest.zip
correspond respectively to the Web View experiments and to the Web Page Test experiments.Each archive contains three files:- config.csv
: Description of parameters and conditions for each run,- metrics.csv
: Value of different metrics collected by the browser,- progressionCurves.csv
: Progression curves of the bytes progress as seen by the network, from 0 to 10 seconds by steps of 100 milliseconds,- listUrl
folder: Indexes the sets of urls.Regarding config.csv
, the columns are: - index: Index for this set of conditions, - location: Location of the machine, - listUrl: List of urls, located in the folder listUrl - browserUsed: Internet browser and version - terminal: Desktop or Mobile - collectionEnvironment: Identification of the collection environment - networkConditionsTrafficShaping (WPT only): Whether native condition or traffic shaping (4G, FIOS, 3GFast, DSL, or custom Emulator conditions) - networkConditionsBandwidth (WPT only): Bandwidth of the network - networkConditionsDelay (WPT only): Delay in the network - networkConditions (WV only): network conditions - ipMode (WV only): requested L3 protocol, - requestedProtocol (WV only): requested L7 protocol - adBlocker (WV only): Whether adBlocker is used or not - winSize (WV only): Window sizeRegarding metrics.csv
, the columns are: - id: Unique identification of an experiment (consisting of an index 'set of conditions' and an index 'current page') - DOM Content Loaded Event End (ms): DOM time, - First Paint (ms) (WV only): First paint time, - Load Event End (ms): Page Load Time from W3C, - RUM Speed Index (ms) (WV only): RUM Speed Index, - Speed Index (ms) (WPT only): Speed Index, - Time for Full Visual Rendering (ms) (WV only): Time for Full Visual Rendering - Visible portion (%) (WV only): Visible portion, - Time to First Byte (ms) (WPT only): Time to First Byte, - Visually Complete (ms) (WPT only): Visually Complete used to compute the Speed Index, - aatf: aatf using ATF-chrome-plugin - bi_aatf: bi_aatf using ATF-chrome-plugin - bi_plt: bi_plt using ATF-chrome-plugin - dom: dom using ATF-chrome-plugin - ii_aatf: ii_aatf using ATF-chrome-plugin - ii_plt: ii_plt using ATF-chrome-plugin - last_css: last_css using ATF-chrome-plugin - last_img: last_img using ATF-chrome-plugin - last_js: last_js using ATF-chrome-plugin - nb_ress_css: nb_ress_css using ATF-chrome-plugin - nb_ress_img: nb_ress_img using ATF-chrome-plugin - nb_ress_js: nb_ress_js using ATF-chrome-plugin - num_origins: num_origins using ATF-chrome-plugin - num_ressources: num_ressources using ATF-chrome-plugin - oi_aatf: oi_aatf using ATF-chrome-plugin - oi_plt: oi_plt using ATF-chrome-plugin - plt: plt using ATF-chrome-pluginRegarding progressionCurves.csv
, the columns are: - id: Unique identification of an experiment (consisting of an index 'set of conditions' and an index 'current page') - url: Url of the current page. SUBPAGE stands for a path. - run: Current run (linked with index of the config for WPT) - filename: Filename of the pcap - fullname: Fullname of the pcap - har_size: Size of the HAR for this experiment, - pagedata_size: Size of the page data report - pcap_size: Size of the pcap - App Byte Index (ms): Application Byte Index as computed from the har file (in the browser) - bytesIn_APP: Total bytes in as seen in the browser, - bytesIn_NET: Total bytes in as seen in the network, - X_BI_net: Network Byte Index computed from the pcap file (in the network) - X_bin_0_for_B_completion to X_bin_99_for_B_completion: X_bin_k_for_B_completion is the bytes progress reached after k*100 millisecondsIf you use these datasets in your research, you can reference to the appropriate paper:@inproceedings{qoeNetworking2020, title={Revealing QoE of Web Users from Encrypted Network Traffic}, author={Huet, Alexis and Saverimoutou, Antoine and Ben Houidi, Zied and Shi, Hao and Cai, Shengming and Xu, Jinchun and Mathieu, Bertrand and Rossi, Dario}, booktitle={2020 IFIP Networking Conference (IFIP Networking)}, year={2020}, organization={IEEE}}
Traffic Volumes from SCATS Traffic Management System Jan-Jun 2025 DCC. Published by Dublin City Council. Available under the license cc-by (CC-BY-4.0).Traffic volumes data across Dublin City from the SCATS traffic management system. The Sydney Coordinated Adaptive Traffic System (SCATS) is an intelligent transportation system used to manage timing of signal phases at traffic signals. SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. The vehicle sensors are generally inductive loops installed within the road.
3 resources are provided:
SCATS Traffic Volumes Data (Monthly) Contained in this report are traffic counts taken from the SCATS traffic detectors located at junctions. The primary function for these traffic detectors is for traffic signal control. Such devices can also count general traffic volumes at defined locations on approach to a junction. These devices are set at specific locations on approaches to the junction but may not be on all approaches to a junction. As there are multiple junctions on any one route, it could be expected that a vehicle would be counted multiple times as it progress along the route. Thus the traffic volume counts here are best used to represent trends in vehicle movement by selecting a specific junction on the route which best represents the overall traffic flows.
Information provided:
End Time: time that one hour count period finishes.
Region: location of the detector site (e.g. North City, West City, etc).
Site: this can be matched with the SCATS Sites file to show location
Detector: the detectors/ sensors at each site are numbered
Sum volume: total traffic volumes in preceding hour
Avg volume: average traffic volumes per 5 minute interval in preceding hour
All Dates Traffic Volumes Data
This file contains daily totals of traffic flow at each site location.
SCATS Site Location Data Contained in this report, the location data for the SCATS sites is provided. The meta data provided includes the following;
Site id – This is a unique identifier for each junction on SCATS
Site description( CAP) – Descriptive location of the junction containing street name(s) intersecting streets
Site description (lower) - – Descriptive location of the junction containing street name(s) intersecting streets
Region – The area of the city, adjoining local authority, region that the site is located
LAT/LONG – Coordinates
Disclaimer: the location files are regularly updated to represent the locations of SCATS sites under the control of Dublin City Council. However site accuracy is not absolute. Information for LAT/LONG and region may not be available for all sites contained. It is at the discretion of the user to link the files for analysis and to create further data. Furthermore, detector communication issues or faulty detectors could also result in an inaccurate result for a given period, so values should not be taken as absolute but can be used to indicate trends....
In November 2024, Google.com held the top spot in India's website rankings, averaging over **** billion monthly visits. YouTube ranked second, with traffic of **** billion visits, while social platforms Instagram.com and Facebook.com followed with *** million and *** million monthly visits each. Internet penetration In the past decade, India has witnessed a remarkable transformation in its digital landscape. This substantial expansion has resulted in extensive digital connectivity, with more than **** of India's *** billion citizens now enjoying internet access. India ranked **** on the Digital Quality of Life Index in 2023, which revealed electronic infrastructure as one of the country’s strengths. YouTube in India As of 2025, India had the world’s largest YouTube user base, figuring over *** million users. The video platform caters to the nation’s tech-savvy denizens as an educational resource and a source of entertainment. Moreover, YouTube has evolved into a dynamic space for digital marketing, especially harnessing the consumer base segment aged below 32 years.
This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The color coded map leverages historical, real time and predictive traffic data. Historical traffic is based on the average of observed speeds over the past three years. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the Code of Practice for Statistics that all producers of official statistics should adhere to. You are welcome to contact us directly by emailing transport.statistics@dft.gov.uk with any comments about how we meet these standards.
These statistics on transport use are published monthly.
For each day, the Department for Transport (DfT) produces statistics on domestic transport:
The associated methodology notes set out information on the data sources and methodology used to generate these headline measures.
From September 2023, these statistics include a second rail usage time series which excludes Elizabeth Line service (and other relevant services that have been replaced by the Elizabeth line) from both the travel week and its equivalent baseline week in 2019. This allows for a more meaningful like-for-like comparison of rail demand across the period because the effects of the Elizabeth Line on rail demand are removed. More information can be found in the methodology document.
The table below provides the reference of regular statistics collections published by DfT on these topics, with their last and upcoming publication dates.
Mode | Publication and link | Latest period covered and next publication |
---|---|---|
Road traffic | Road traffic statistics | Full annual data up to December 2024 was published in June 2025. Quarterly data up to March 2025 was published June 2025. |
Rail usage | The Office of Rail and Road (ORR) publishes a range of statistics including passenger and freight rail performance and usage. Statistics are available at the https://dataportal.orr.gov.uk/" class="govuk-link">ORR website. Statistics for rail passenger numbers and crowding on weekdays in major cities in England and Wales are published by DfT. |
ORR’s latest quarterly rail usage statistics, covering January to March 2025, was published in June 2025. DfT’s most recent annual passenger numbers and crowding statistics for 2023 were published in September 2024. |
Bus usage | Bus statistics | The most recent annual publication covered the year ending March 2024. The most recent quarterly publication covered January to March 2025. |
TfL tube and bus usage | Data on buses is covered by the section above. https://tfl.gov.uk/status-updates/busiest-times-to-travel" class="govuk-link">Station level business data is available. | |
Cycling usage | Walking and cycling statistics, England | 2023 calendar year published in August 2024. |
Cross Modal and journey by purpose | National Travel Survey | 2023 calendar year data published in August 2024. |
Among one million websites receiving largest traffic, *** percent was using header-bidding technology in July 2025. The same was true for ***** percent of websites among the top 100 thousand and ***percent among the top 10 thousand.
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
As of June 2021, Amazon was the most visited e-commerce site in the United States, recording approximately **** billion monthly visits to Amazon.com. eBay ranked second, with more than *** million visits per month, while Walmart came in third, surpassing *** million.
Online retail in a nutshell Online retail in the United States is a multi-billion dollar sector of business-to-consumer transactions where goods and services are sold via the internet. There are several business models at play here with the likes of Walmart, Home Depot, or Target based on brick-and-mortar stores whereas others such as Amazon, eBay, or Etsy are designated online marketplaces. It also includes eBay which allows third-party or private sellers to market their goods.
Online retail sites enable customers to browse through a range of products before placing them into an electronic shopping cart. Unlike their retail counterparts, online retail sites are not bound to a physical location or limited by store opening hours, and as such, have proven themselves immensely convenient for consumers. Apparel & accessories and computers & consumer electronics are some of the most popular e-commerce categories in the United States.
Fast-growing retailers In addition to being the most visited retail site in the United States, Amazon also accounts for the vast majority of e-commerce sales. Over the past few years, Amazon’s retail sales in the United States have grown steadily, however, competition in this space is growing strong. Etsy, followed closely by Walmart and Target, are among the companies that recorded the fastest online retail sales growth in 2021.
Pornhub, which is owned by the Canadian entertainment conglomerate Aylo, saw over three billion visits to its website from users based in the United States in January 2024. Web visits from Indonesia ranked second, as almost 765 million visits from the country were registered to Pornhub in the examined period. Brazil followed, with around 503 million visits to the popular pornographic website. France users generated approximately 470 million visits to the website during the measured month.
In May 2025, booking.com was the most visited travel and tourism website worldwide. That month, Booking’s web page recorded around *** million visits. Tripadvisor.com and airbnb.com followed in the ranking, with roughly *** million and ** million visits, respectively. Popular online travel agencies in the U.S. Online travel agencies (OTAs), such as Booking.com and Expedia, offer a wide variety of services, including online hotel bookings, flight reservations, and car rentals. According to the Statista Consumer Insights Global survey, when looking at flight search engine online bookings by brand in the United States, Booking.com and Expedia were the most popular options when it came to making online flight reservations in 2025. When focusing on hotel and private accommodation online bookings in the U.S., Booking.com was again the most popular brand, followed by Airbnb, Expedia, and Hotels.com. Booking Holdings vs. Expedia Group Booking.com is one of the most popular sites of the online travel group Booking Holdings, the leading online travel agency worldwide based on revenue, that also owns brands like Priceline, Kayak, and Agoda. In 2024, Booking Holdings' revenue amounted to almost ** billion U.S. dollars, the highest figure reported by the company to date. Meanwhile, global revenue of Expedia Group, which manages brands like Expedia, Hotels.com, and Vrbo, reached nearly ** billion U.S. dollars that year.
In December 2024, the news website with the most monthly visits in the United States was nytimes.com, with a total of 463.07 million monthly visits in that month. In second place was cnn.com with close to 357 million visits, followed by foxnews.com with just over a quater of a million. Online news consumption in the U.S. Americans get their news in a variety of ways, but social media is an increasingly popular option. A survey on social media news consumption revealed that 55 percent of Twitter users regularly used the site for news, and Facebook and Reddit were also popular for news among their users. Interestingly though, social media is the least trusted news sources in the United States. News and trust Trust in news sources has become increasingly important to the American news consumer amidst the spread of fake news, and the public are more vocal about whether or not they have faith in a source to report news correctly. Ongoing discussions about the credibility, accuracy and bias of news networks, anchors, TV show hosts, and news media professionals mean that those looking to keep up to date tend to be more cautious than ever before. In general, news audiences are skeptical. In 2020, just nine percent of respondents to a survey investigating the perceived objectivity of the mass media reported having a great deal of trust in the media to report news fully, accurately, and fairly.
As of February 2025, English was the most popular language for web content, with over 49.4 percent of websites using it. Spanish ranked second, with six percent of web content, while the content in the German language followed, with 5.6 percent. English as the leading online language United States and India, the countries with the most internet users after China, are also the world's biggest English-speaking markets. The internet user base in both countries combined, as of January 2023, was over a billion individuals. This has led to most of the online information being created in English. Consequently, even those who are not native speakers may use it for convenience. Global internet usage by regions As of October 2024, the number of internet users worldwide was 5.52 billion. In the same period, Northern Europe and North America were leading in terms of internet penetration rates worldwide, with around 97 percent of its populations accessing the internet.
In November 2024, Fox News ranked first among the most popular multiplatform conservative and right-wing websites in the United States with over 91 million unique visitors from mobile and desktop connections. Outkick ranked second with approximately 7.71 million unique monthly visitors.
In 2024, Tinder.com was the most popular dating website worldwide, registering over ************* average monthly visits. Badoo.com ranked second with ************* monthly visits, while Bumble.com generated roughly almost ************* average visits during the analyzed period.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.