3 datasets found
  1. Most visited Latin American countries 2023

    • statista.com
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most visited Latin American countries 2023 [Dataset]. https://www.statista.com/statistics/305482/latin-american-countries-with-the-most-international-tourist-arrivals/
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Latin America, Americas, LAC
    Description

    Mexico was the most visited destination by international tourists in Latin America in 2023, surpassing 42 million tourist arrivals in that year. In the second place, but far behind, was the Dominican Republic.

    A global tourism powerhouse By developing airport infrastructure and calibrating new direct flights, Mexico has set international tourism high on its priorities list. At the forefront of Mexico's spike in international tourism is the FONATUR, or Mexico's National Fund for Tourism Development. The tourism body worked in the expansion of Cancun's airport and other four key tourist airports in the country. Plus, Mexico City's airport added new international direct flights in the 2010s, resulting in being rated as the best internationally connected airport in Latin America in 2019. With this and other developments in this sector, the North American country managed to rank among the top 20 destinations in the Travel and Tourism Competitiveness Ranking that year.

    South America's tourism leader Through its geographically diverse landscape and globally recognized wine industry, Argentina has grown its international tourism sector. The influx of foreign visitors to Argentina can in some way be attributed to the country's air-travel infrastructure. The national air carrier, Aerolineas Argentinas, was one of the top airline operating in Latin America in 2019. That same year, passenger traffic to Argentinian airports grew by four percent. Though in April 2020, in the outbreak of the COVID-19 pandemic, the arrival of international air travel tourists to Argentina came to a complete halt, ensuing a similar fate of the global tourism industry.

  2. w

    Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt (2023). Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/424
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt
    Time period covered
    1999 - 2000
    Area covered
    Angola
    Description

    Abstract

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).

    Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).

    The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.

    The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.

    The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

    Geographic coverage

    The database covers the following countries: Afghanistan Albania Algeria Andorra Angola
    Antigua and Barbuda Argentina
    Armenia Australia
    Austria Azerbaijan
    Bahamas, The
    Bahrain Bangladesh
    Barbados
    Belarus Belgium Belize
    Benin
    Bhutan
    Bolivia Bosnia and Herzegovina
    Brazil
    Brunei
    Bulgaria
    Burkina Faso
    Burundi Cambodia
    Cameroon
    Canada
    Cayman Islands
    Central African Republic
    Chad
    Chile
    China
    Colombia
    Comoros Congo, Dem. Rep.
    Congo, Rep. Costa Rica
    Cote d'Ivoire
    Croatia Cuba
    Cyprus
    Czech Republic
    Denmark Dominica
    Dominican Republic
    Ecuador Egypt, Arab Rep.
    El Salvador Eritrea Estonia Ethiopia
    Faeroe Islands
    Fiji
    Finland France
    Gabon
    Gambia, The Georgia Germany Ghana
    Greece
    Grenada Guatemala
    Guinea
    Guinea-Bissau
    Guyana
    Haiti
    Honduras
    Hong Kong, China
    Hungary Iceland India
    Indonesia
    Iran, Islamic Rep.
    Iraq
    Ireland Israel
    Italy
    Jamaica Japan
    Jordan
    Kazakhstan
    Kenya
    Korea, Dem. Rep.
    Korea, Rep. Kuwait
    Kyrgyz Republic Lao PDR Latvia
    Lebanon Lesotho Liberia Liechtenstein
    Lithuania
    Luxembourg
    Macao, China
    Macedonia, FYR
    Madagascar
    Malawi
    Malaysia
    Maldives
    Mali
    Mauritania
    Mexico
    Moldova Mongolia
    Morocco Mozambique
    Myanmar Namibia Nepal
    Netherlands Netherlands Antilles
    New Caledonia
    New Zealand Nicaragua
    Niger
    Nigeria Norway
    Oman
    Pakistan
    Panama
    Papua New Guinea
    Paraguay
    Peru
    Philippines Poland
    Portugal
    Puerto Rico Qatar
    Romania Russian Federation
    Rwanda
    Sao Tome and Principe
    Saudi Arabia
    Senegal Sierra Leone
    Singapore
    Slovak Republic Slovenia
    Solomon Islands Somalia South Africa
    Spain
    Sri Lanka
    St. Kitts and Nevis St. Lucia
    St. Vincent and the Grenadines
    Sudan
    Suriname
    Swaziland
    Sweden
    Switzerland Syrian Arab Republic
    Tajikistan
    Tanzania
    Thailand
    Togo
    Trinidad and Tobago Tunisia Turkey
    Turkmenistan
    Uganda
    Ukraine United Arab Emirates
    United Kingdom
    United States
    Uruguay Uzbekistan
    Vanuatu Venezuela, RB
    Vietnam Virgin Islands (U.S.)
    Yemen, Rep. Yugoslavia, FR (Serbia/Montenegro)
    Zambia
    Zimbabwe

    Kind of data

    Observation data/ratings [obs]

    Mode of data collection

    Other [oth]

  3. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/8a4ffc7b7ab3404a8cd4e4576fae7c1d
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Most visited Latin American countries 2023 [Dataset]. https://www.statista.com/statistics/305482/latin-american-countries-with-the-most-international-tourist-arrivals/
Organization logo

Most visited Latin American countries 2023

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 2, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Latin America, Americas, LAC
Description

Mexico was the most visited destination by international tourists in Latin America in 2023, surpassing 42 million tourist arrivals in that year. In the second place, but far behind, was the Dominican Republic.

A global tourism powerhouse By developing airport infrastructure and calibrating new direct flights, Mexico has set international tourism high on its priorities list. At the forefront of Mexico's spike in international tourism is the FONATUR, or Mexico's National Fund for Tourism Development. The tourism body worked in the expansion of Cancun's airport and other four key tourist airports in the country. Plus, Mexico City's airport added new international direct flights in the 2010s, resulting in being rated as the best internationally connected airport in Latin America in 2019. With this and other developments in this sector, the North American country managed to rank among the top 20 destinations in the Travel and Tourism Competitiveness Ranking that year.

South America's tourism leader Through its geographically diverse landscape and globally recognized wine industry, Argentina has grown its international tourism sector. The influx of foreign visitors to Argentina can in some way be attributed to the country's air-travel infrastructure. The national air carrier, Aerolineas Argentinas, was one of the top airline operating in Latin America in 2019. That same year, passenger traffic to Argentinian airports grew by four percent. Though in April 2020, in the outbreak of the COVID-19 pandemic, the arrival of international air travel tourists to Argentina came to a complete halt, ensuing a similar fate of the global tourism industry.

Search
Clear search
Close search
Google apps
Main menu