The leading causes of death among children aged 5 to 9 years in the United States in 2022 were unintentional injuries, cancer, and congenital malformations, deformations and chromosomal abnormalities. At that time, unintentional injuries accounted for around 28 percent of all deaths among this age group. Child abuse in the U.S. Sadly, assault or homicide, was the fourth leading cause of death among those aged 5 to 9 years in the United States in 2022, accounting for around 9.4 percent of all deaths. That year, there were around 113,259 cases of child abuse in the U.S. among children aged 6 to 9 years and 129,846 cases among children aged 2 to 5 years. In 2022, there were around 5.36 child deaths per day in the United States due to abuse and neglect. Suicide among children Assault or homicide was also among the top five leading causes of death among children aged 10 to 14 years, but perhaps even more troubling is that suicide is the second leading cause of death among this age group. As with younger children, unintentional injuries are the leading cause of death among those aged 10 to 14 years, however, suicide accounts for around 13 percent of all deaths among this age group. Comparatively, suicide is not among the ten-leading causes of death among children from the age 1 to 9 years.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
As of 2022, the third leading cause of death among teenagers aged 15 to 19 years in the United States was intentional self-harm or suicide, contributing around 17 percent of deaths among age group. The leading cause of death at that time was unintentional injuries, contributing to around 37.4 percent of deaths, while 21.8 percent of all deaths in this age group were due to assault or homicide. Cancer and heart disease, the overall leading causes of death in the United States, are also among the leading causes of death among U.S. teenagers. Adolescent suicide in the United States In 2021, around 22 percent of students in grades 9 to 12 reported that they had seriously considered attempting suicide in the past year. Female students were around twice as likely to report seriously considering suicide compared to male students. In 2022, Montana had the highest rate of suicides among U.S. teenagers with around 39 deaths per 100,000 teenagers, followed by South Dakota with a rate of 33 per 100,000. The states with the lowest death rates among adolescents are New York and New Jersey. Mental health treatment Suicidal thoughts are a clear symptom of mental health issues. Mental health issues are not rare among children and adolescents, and treatment for such issues has become increasingly accepted and accessible. In 2021, around 15 percent of boys and girls aged 5 to 17 years had received some form of mental health treatment in the past year. At that time, around 35 percent of youths aged 12 to 17 years in the United States who were receiving specialty mental health services were doing so because they had thought about killing themselves or had already tried to kill themselves.
In 2022, the leading causes of death for children aged one to four years in the United States were unintentional injuries and congenital malformations, deformations, and chromosomal abnormalities. At that time, around 31 percent of all deaths among these children were caused by unintentional injuries. Differences in causes of death among children by age Just as unintentional injuries are the leading cause of death among children aged one to four, it is also the leading cause of death for the age groups five to nine and 10 to 14. However, congenital malformations, deformations, and chromosomal abnormalities account for fewer deaths as children become older, while the share of deaths caused by cancer is higher among those aged five to nine and 10 to 14. In fact, cancer is the second leading cause of death among five to nine-year-olds, accounting for around 15 percent of all deaths. Sadly, the second leading cause of death among children aged 10 to 14 is intentional self-harm, with 13 percent of all deaths among those in this age group caused by suicide. Leading causes of death in the United States The leading causes of death in the United States are heart disease and malignant neoplasms. Together, these two diseases accounted for around 40 percent of all deaths in the United States in 2022. That year, COVID-19 was the fourth leading cause of death, with about six percent of all deaths caused by COVID-19. In 2022, the lifetime odds that the average person in the United States would die from heart disease was one in six, while the odds for cancer were one in seven and for COVID-19 one in 23.
The leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City. Report last ran: 09/24/2019 Rates based on small numbers (RSE > 30) as well as aggregate counts less than 5 have been suppressed in downloaded data Source: Bureau of Vital Statistics and New York City Department of Health and Mental Hygiene
In 2022, the leading causes of death among children and adolescents in the United States aged 10 to 14 were unintentional injuries, intentional self-harm (suicide), and cancer. That year, unintentional injuries accounted for around 25 percent of all deaths among this age group. Leading causes of death among older teens Like those aged 10 to 14 years, the leading cause of death among older teenagers in the U.S. aged 15 to 19 years is unintentional injuries. In 2022, unintentional injuries accounted for around 37 percent of all deaths among older teens. However, unlike those aged 10 to 14, the second leading cause of death among teens aged 15 to 19 is assault or homicide. Sadly, the third leading cause of death among this age group is suicide, making suicide among the leading three causes of death for both age groups. Teen suicide Suicide remains a major problem among teenagers in the United States, as reflected in the leading causes of death among this age group. It was estimated that in 2021, around 22 percent of high school students in the U.S. considered attempting suicide in the past year, with this rate twice as high for girls than for boys. The states with the highest death rates due to suicide among adolescents aged 15 to 19 years are Montana, South Dakota, and New Mexico. In 2022, the death rate from suicide among this age group in Montana was 39 per 100,000 population. In comparison, New York, the state with the lowest rate, had just five suicide deaths among those aged 15 to 19 years per 100,000 population.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
For current version see: https://www.sandiegocounty.gov/content/sdc/hhsa/programs/phs/community_health_statistics/CHSU_Mortality.html#leading
Leading Causes of Death in San Diego County, by Gender, Race/Ethnicity, HHSA Region and Supervisorial District. Gender and race/ethnicity are at the county geographic level.
Notes:
1. Rank is based on total number of deaths in each of the National Center for Health Statistics (NCHS) "rankable" categories. The top 15 leading causes of death presented here are based on the San Diego County residents for each year.
2. Cause of death is based on the underlying cause of death reported on death certificates as classified by ICD-10 codes.
3. Deaths for specific demographics or geographic area may not equal the total deaths for San Diego County due to missing data.
§ Not shown for fewer than 5 deaths.
Source: California Department of Public Health, Center for Health Statistics, Office of Health Information and Research, Vital Records Business Intelligence System.
Prepared by County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2018.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World death rate by year from 1950 to 2025.
In 2023, the leading causes of death in Canada were malignant neoplasms (cancer) and diseases of the heart. Together, these diseases accounted for around ** percent of all deaths in Canada that year. COVID-19 was the sixth leading cause of death in Canada in 2023 with *** percent of deaths. The leading causes of death in Canada In 2023, around ****** people in Canada died from cancer, making it by far the leading cause of death in the country. In comparison, an estimated ****** people died from diseases of the heart, while ****** died from accidents. In 2023, the death rate for diabetes mellitus was **** per 100,000 population, making it the seventh leading cause of death. Diabetes is a growing problem in Canada, with around ***** percent of the population diagnosed with the disease as of 2023. What is the deadliest form of cancer in Canada? In Canada, lung and bronchus cancer account for the largest share of cancer deaths, followed by colorectal cancer. In 2023, the death rate for lung and bronchus cancer was **** per 100,000 population, compared to **** deaths per 100,000 population for colorectal cancer. However, although lung and bronchus cancer are the deadliest cancers for both men and women in Canada, breast cancer is the second-deadliest cancer among women, accounting for **** percent of all cancer deaths. Colorectal cancer is the second most deadly cancer among men in Canada, followed by prostate cancer. In 2023, colorectal cancer accounted for around **** percent of all cancer deaths among men in Canada, while prostate cancer was responsible for **** percent of such deaths.
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Rank, number of deaths, percentage of deaths, and mortality rates for the leading causes of infant death (under one year of age), by sex, 2000 to most recent year.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.
A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Starting April 4, 2022, negative rapid antigen and rapid PCR test results for SARS-CoV-2 are no longer required to be reported to the Connecticut Department of Public Health as of April 4. Negative test results from laboratory based molecular (PCR/NAAT) results are still required to be reported as are all positive test results from both molecular (PCR/NAAT) and antigen tests.
On 5/16/2022, 8,622 historical cases were included in the data. The date range for these cases were from August 2021 – April 2022.”
Death statistics (i) Number of Deaths for Different Sexes and Crude Death Rate for the Period from 1981 to 2023 (ii) Age-standardised Death Rate (Overall and by Sex) for the Period from 1981 to 2023 (iii) Age-specific Death Rate for Year 2013 and 2023 (iv) Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (v) Number of Deaths by Leading Causes of Death for the Period from 2001 to 2023 (vi) Age-standardised Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (vii) Late Foetal Mortality Rate for the Period from 1981 to 2023 (viii) Perinatal Mortality Rate for the Period from 1981 to 2023 (ix) Neonatal Mortality Rate for the Period from 1981 to 2023 (x) Infant Mortality Rate for the Period from 1981 to 2023 (xi) Number of Maternal Deaths for the Period from 1981 to 2023 (xii) Maternal Mortality Ratio for the Period from 1981 to 2023
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundGlobal and regional projections of mortality and burden of disease by cause for the years 2000, 2010, and 2030 were published by Murray and Lopez in 1996 as part of the Global Burden of Disease project. These projections, which are based on 1990 data, continue to be widely quoted, although they are substantially outdated; in particular, they substantially underestimated the spread of HIV/AIDS. To address the widespread demand for information on likely future trends in global health, and thereby to support international health policy and priority setting, we have prepared new projections of mortality and burden of disease to 2030 starting from World Health Organization estimates of mortality and burden of disease for 2002. This paper describes the methods, assumptions, input data, and results. Methods and FindingsRelatively simple models were used to project future health trends under three scenarios—baseline, optimistic, and pessimistic—based largely on projections of economic and social development, and using the historically observed relationships of these with cause-specific mortality rates. Data inputs have been updated to take account of the greater availability of death registration data and the latest available projections for HIV/AIDS, income, human capital, tobacco smoking, body mass index, and other inputs. In all three scenarios there is a dramatic shift in the distribution of deaths from younger to older ages and from communicable, maternal, perinatal, and nutritional causes to noncommunicable disease causes. The risk of death for children younger than 5 y is projected to fall by nearly 50% in the baseline scenario between 2002 and 2030. The proportion of deaths due to noncommunicable disease is projected to rise from 59% in 2002 to 69% in 2030. Global HIV/AIDS deaths are projected to rise from 2.8 million in 2002 to 6.5 million in 2030 under the baseline scenario, which assumes coverage with antiretroviral drugs reaches 80% by 2012. Under the optimistic scenario, which also assumes increased prevention activity, HIV/AIDS deaths are projected to drop to 3.7 million in 2030. Total tobacco-attributable deaths are projected to rise from 5.4 million in 2005 to 6.4 million in 2015 and 8.3 million in 2030 under our baseline scenario. Tobacco is projected to kill 50% more people in 2015 than HIV/AIDS, and to be responsible for 10% of all deaths globally. The three leading causes of burden of disease in 2030 are projected to include HIV/AIDS, unipolar depressive disorders, and ischaemic heart disease in the baseline and pessimistic scenarios. Road traffic accidents are the fourth leading cause in the baseline scenario, and the third leading cause ahead of ischaemic heart disease in the optimistic scenario. Under the baseline scenario, HIV/AIDS becomes the leading cause of burden of disease in middle- and low-income countries by 2015. ConclusionsThese projections represent a set of three visions of the future for population health, based on certain explicit assumptions. Despite the wide uncertainty ranges around future projections, they enable us to appreciate better the implications for health and health policy of currently observed trends, and the likely impact of fairly certain future trends, such as the ageing of the population, the continued spread of HIV/AIDS in many regions, and the continuation of the epidemiological transition in developing countries. The results depend strongly on the assumption that future mortality trends in poor countries will have a relationship to economic and social development similar to those that have occurred in the higher-income countries.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death.
Starting in July 2020, this dataset will be updated every weekday. Data are subject to future revision as reporting changes.
The leading causes of death among children aged 5 to 9 years in the United States in 2022 were unintentional injuries, cancer, and congenital malformations, deformations and chromosomal abnormalities. At that time, unintentional injuries accounted for around 28 percent of all deaths among this age group. Child abuse in the U.S. Sadly, assault or homicide, was the fourth leading cause of death among those aged 5 to 9 years in the United States in 2022, accounting for around 9.4 percent of all deaths. That year, there were around 113,259 cases of child abuse in the U.S. among children aged 6 to 9 years and 129,846 cases among children aged 2 to 5 years. In 2022, there were around 5.36 child deaths per day in the United States due to abuse and neglect. Suicide among children Assault or homicide was also among the top five leading causes of death among children aged 10 to 14 years, but perhaps even more troubling is that suicide is the second leading cause of death among this age group. As with younger children, unintentional injuries are the leading cause of death among those aged 10 to 14 years, however, suicide accounts for around 13 percent of all deaths among this age group. Comparatively, suicide is not among the ten-leading causes of death among children from the age 1 to 9 years.