In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
After going through quite the verbal loop when ordering foreign currency through the bank, which involved a discussion with an assigned financial advisor at the branch the following day to confirm details, I noticed despite our names hinting at the assumed typical background similarities, communication by phone was much more difficult due to the thickness in accents and different speech patterns when voicing from a non-native speaker.
It hit me then coming from an extremely multicultural and welcoming city, the challenges others from completely different labels given to them in life must go through in their daily affairs when having to face communication barriers that I myself encountered, particularly when interacting with those outside their usual bubble. Now imagine this situation occurring every hour across the world in various sectors of business. How may this impede, help or create frustrations in minor or major ways as a result of increasing workplace diversity quota demands, customer satisfaction needs and process efficiencies?
The data I was looking for to explore this phenomena existed in the form of native and non-native speakers of the 100 most commonly spoken languages across the globe.
The data in this database contains the following attributes:
The data was collected with the aid of WordTips visualization of the 22nd edition of Ethnologue - "a research center for language intelligence"
https://www.ethnologue.com/world https://www.ethnologue.com/guides/ethnologue200 https://word.tips/pictures/b684e98f-f512-4ac0-96a4-0efcf6decbc0_most-spoken-languages-world-5.png?auto=compress,format&rect=0,0,2001,7115&w=800&h=2845
As globalization no longer constrains us, what implications will this have in terms of organizational communications conducted moving forward? I believe this is something to be examined in careful context in order to make customer relationship processes meaningful rather than it being confined to a strictly detached transactional basis.
As of February 2025, English was the most popular language for web content, with over 49.4 percent of websites using it. Spanish ranked second, with six percent of web content, while the content in the German language followed, with 5.6 percent. English as the leading online language United States and India, the countries with the most internet users after China, are also the world's biggest English-speaking markets. The internet user base in both countries combined, as of January 2023, was over a billion individuals. This has led to most of the online information being created in English. Consequently, even those who are not native speakers may use it for convenience. Global internet usage by regions As of October 2024, the number of internet users worldwide was 5.52 billion. In the same period, Northern Europe and North America were leading in terms of internet penetration rates worldwide, with around 97 percent of its populations accessing the internet.
In 2023, around 43.37 million people in the United States spoke Spanish at home. In comparison, approximately 998,179 people were speaking Russian at home during the same year. The distribution of the U.S. population by ethnicity can be accessed here. A ranking of the most spoken languages across the world can be accessed here.
Mexico is the country with the largest number of native Spanish speakers in the world. As of 2024, 132.5 million people in Mexico spoke Spanish with a native command of the language. Colombia was the nation with the second-highest number of native Spanish speakers, at around 52.7 million. Spain came in third, with 48 million, and Argentina fourth, with 46 million. Spanish, a world language As of 2023, Spanish ranked as the fourth most spoken language in the world, only behind English, Chinese, and Hindi, with over half a billion speakers. Spanish is the official language of over 20 countries, the majority on the American continent, nonetheless, it's also one of the official languages of Equatorial Guinea in Africa. Other countries have a strong influence, like the United States, Morocco, or Brazil, countries included in the list of non-Hispanic countries with the highest number of Spanish speakers. The second most spoken language in the U.S. In the most recent data, Spanish ranked as the language, other than English, with the highest number of speakers, with 12 times more speakers as the second place. Which comes to no surprise following the long history of migrations from Latin American countries to the Northern country. Moreover, only during the fiscal year 2022. 5 out of the top 10 countries of origin of naturalized people in the U.S. came from Spanish-speaking countries.
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.Hausa is a member of the Chadic language family, and belongs together with the Semitic and Cushitic languages to the Afroasiatic language family. With over 25 million speakers, it is widely spoken in West Africa. The collection of the Hausa speech and text corpus followed the GlobalPhone collection standards. First, a large text corpus was built by crawling websites that cover main Hausa newspaper sources. Hausa’s modern official orthography is a Latin-based alphabet called Boko, which was imposed in the 1930s by the British colonial administration. It consists of 22 characters of the English alphabet plus five special characters. The collection is based on five main newspapers written in Boko. After cleaning and normalization, these texts were used to build language models and to select prompts for the speech data recordings. Native speakers of Hausa were asked to read prompted sentences of newspaper articles. The entire collection...
The number of enrollments in language schools in Spain reveals that Spaniards are well aware of the importance of foreign languages in modern times. During the 2022/23 academic year, almost 331,000 people were registered at the Spanish language schools to add a new language to their curricula. In a globalized world, languages are taking a much more important role on the job market. The most studied and spoken languages in the world include English, Mandarin, Hindi or Spanish.
The importance of language knowledge in the job market Enrollment numbers at language schools come as no surprise considering that foreign languages have become a vital asset for job seekers in the last years. English, par excellence the most used language for international affairs, unsurprisingly ranked first on the list of most valued languages on the Spanish job market, with approximately 65.2 of job openings that require foreign language skills demanding this one. Far from that stood French, with 17.38 percent of the job openings.
Languages in the Spanish multimedia scene Most of the best selling albums Spain during 2022 were recorded in the country’s main language Spanish, with 38 albums in the top 50. As for videogames, 96 percent of the games produced in the country had English as a language option. Spanish was the second most used language, being present in 91 percent of productions.
This dataset displays information regarding the language spoken most often at home. This data is available on the Census Division level, and is available from the 2006 Canadian Census. This data was obtained through: Statistics Canada. This data refers to the language spoken most often at home by the individual at the time of the census. Other languages spoken at home on a regular basis were also collected. Included are population figures for the following attributes: Total Population, English, French, Non-Official, English and French, English and Non-Official Language, French and Non-Official Language, and English French and Non-Official Speaking. This data is also broken down by Age Group.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Finnish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Finnish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Finnish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Finnish speech models that understand and respond to authentic Finnish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Finnish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Finnish speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mandarin Chinese General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Mandarin speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mandarin Chinese communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Mandarin speech models that understand and respond to authentic Chinese accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mandarin Chinese. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Mandarin speech and language AI applications:
Using data from reports such as the "English Proficiency Index" (EDU) from Education First, one can see the significant impact of culture, education and globalization on the ability of citizens of different countries to speak English.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Danish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Danish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Danish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Danish speech models that understand and respond to authentic Danish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Danish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Danish speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Polish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Polish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Polish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Polish speech models that understand and respond to authentic Polish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Polish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Polish speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mexican Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mexican Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Mexican accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mexican Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This Mandarin Chinese Call Center Speech Dataset for the Retail and E-commerce industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Mandarin speakers. Featuring over 30 hours of real-world, unscripted audio, it provides authentic human-to-human customer service conversations vital for training robust ASR models.
Curated by FutureBeeAI, this dataset empowers voice AI developers, data scientists, and language model researchers to build high-accuracy, production-ready models across retail-focused use cases.
The dataset contains 30 hours of dual-channel call center recordings between native Mandarin Chinese speakers. Captured in realistic scenarios, these conversations span diverse retail topics from product inquiries to order cancellations, providing a wide context range for model training and testing.
This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral, ensuring real-world scenario coverage.
Such variety enhances your model’s ability to generalize across retail-specific voice interactions.
All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.
These transcriptions are production-ready, making model training faster and more accurate.
Rich metadata is available for each participant and conversation:
This granularity supports advanced analytics, dialect filtering, and fine-tuned model evaluation.
This dataset is ideal for a range of voice AI and NLP applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Spanish accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.
Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.
The dataset features 30 hours of dual-channel call center recordings between native Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.
This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.
Such domain-rich variety ensures model generalization across common real estate support conversations.
All recordings are accompanied by precise, manually verified transcriptions in JSON format.
These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.
Detailed metadata accompanies each participant and conversation:
This enables smart filtering, dialect-focused model training, and structured dataset exploration.
This dataset is ideal for voice AI and NLP systems built for the real estate sector:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Czech General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Czech speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Czech communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Czech speech models that understand and respond to authentic Czech accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Czech. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Czech speech and language AI applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This Mexican Spanish Call Center Speech Dataset for the Retail and E-commerce industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish speakers. Featuring over 30 hours of real-world, unscripted audio, it provides authentic human-to-human customer service conversations vital for training robust ASR models.
Curated by FutureBeeAI, this dataset empowers voice AI developers, data scientists, and language model researchers to build high-accuracy, production-ready models across retail-focused use cases.
The dataset contains 30 hours of dual-channel call center recordings between native Mexican Spanish speakers. Captured in realistic scenarios, these conversations span diverse retail topics from product inquiries to order cancellations, providing a wide context range for model training and testing.
This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral, ensuring real-world scenario coverage.
Such variety enhances your model’s ability to generalize across retail-specific voice interactions.
All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.
These transcriptions are production-ready, making model training faster and more accurate.
Rich metadata is available for each participant and conversation:
This granularity supports advanced analytics, dialect filtering, and fine-tuned model evaluation.
This dataset is ideal for a range of voice AI and NLP applications:
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Portuguese General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Portuguese speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Portuguese communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Portuguese speech models that understand and respond to authentic Portuguese accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Portuguese. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Portuguese speech and language AI applications:
In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.