Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Discover the booming GIS software market! Explore its $15 billion valuation, 12% CAGR growth, key drivers, trends, and leading players like Esri & Google. This in-depth analysis reveals regional market share and future projections through 2033.
Facebook
TwitterThis dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.
One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.
Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.
Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.
Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.
Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.
The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.
Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The GIS Software market is booming, projected to reach $45 billion by 2033 with a CAGR of 12%! Discover key trends, drivers, and restraints shaping this dynamic sector, including the impact of cloud computing, AI, and IoT. Leading companies and regional insights are analyzed in this comprehensive market report.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The GIS Analytics market is booming, projected to reach $2979.7 million by 2025, with a 5.6% CAGR. Discover key drivers, trends, and restraints shaping this dynamic industry, including cloud adoption, location intelligence, and AI integration. Leading companies and regional market analysis are included.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019 and sho
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! Explore key trends, growth drivers, and leading companies in this $15 billion industry projected to reach $28 billion by 2033. Learn about cloud-based solutions, regional market shares, and the future of geographic information systems.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The booming GIS Solutions market, projected to reach $15 billion in 2025 with a strong CAGR, is transforming industries with its location intelligence. Learn about key trends, drivers, restraints, and leading companies shaping this dynamic sector. Explore market segmentation by software, services, applications, and regions.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS software market! Explore key trends, growth drivers, and regional analysis in our comprehensive market report. Learn about leading companies and the future of location intelligence. Projecting a $45B market by 2033!
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming geographical mapping software market! This in-depth analysis reveals key trends, growth drivers, regional insights, and leading companies shaping the future of geospatial technology. Learn about market size, CAGR, and top applications in urban planning, geological exploration, and more.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information Systems (GIS) Platform market is booming, projected to reach $2908.4 million by 2025, with a CAGR of 4.9%. Discover key trends, drivers, and regional insights shaping this dynamic market, including the impact of cloud computing, AI, and IoT. Explore market segmentation and leading companies.
Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) Solutions market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of approximately 8%. This growth is attributed to several key factors. Firstly, the rising need for precise spatial data analysis and visualization across industries like agriculture (precision farming), oil & gas (resource exploration and management), and construction (infrastructure planning and development) is driving demand. Secondly, advancements in GIS software and services, including cloud-based solutions and AI-powered analytics, are enhancing efficiency and accessibility. Thirdly, government initiatives promoting smart cities and infrastructure development are further boosting market expansion. The market is segmented by application (Agriculture, Oil & Gas, AEC, Transportation, Mining, Government, Healthcare, Others) and type (Software, Services), with software solutions currently holding a larger market share due to increasing digitization and data-driven decision-making. North America and Europe are currently the leading regional markets, benefiting from established infrastructure and high technology adoption rates, but Asia-Pacific is poised for significant growth driven by rapid urbanization and infrastructure development. Despite the promising growth trajectory, certain challenges remain. High initial investment costs for GIS software and implementation can be a barrier to entry for smaller businesses. Furthermore, the need for skilled professionals to effectively utilize and manage GIS data poses a considerable constraint. However, the ongoing development of user-friendly interfaces and accessible training programs is mitigating this issue. The competitive landscape is characterized by a mix of established players like ESRI, Hexagon, and Pitney Bowes, alongside emerging technology providers. These companies are actively investing in R&D and strategic partnerships to maintain their competitive edge and capitalize on the market's expansion. The long-term outlook for the GIS solutions market remains positive, with continuous innovation and expanding applications across various sectors paving the way for sustained growth throughout the forecast period.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! This in-depth analysis reveals key trends, growth drivers, and leading companies shaping the future of spatial data. Explore market size, CAGR, regional insights, and application segments (Geological Exploration, Urban Planning, etc.). Learn how cloud-based solutions are revolutionizing GIS.
Facebook
Twitterhttps://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global Geographic Information System (GIS) Software market size was valued at USD 24.74 billion in 2025 and is projected to reach USD 72.86 billion by 2033, exhibiting a CAGR of 10.32% during the forecast period. The growing adoption of GIS technology in various industries, such as government, utilities, transportation, defense, and telecommunications, is a key factor driving market growth. Additionally, the increasing demand for location-based intelligence for decision-making, urban planning, and resource management is further fueling the market expansion. The cloud-based deployment model is gaining popularity due to its cost-effectiveness, scalability, and accessibility. The urban planning application segment holds a significant market share attributed to the rising need for efficient land use planning and infrastructure development. North America and Europe are the leading regional markets, with Asia Pacific expected to witness substantial growth owing to the increasing adoption of GIS technology in emerging economies. Key players in the market include Pitney Bowes, Oracle Corporation, Autodesk, TomTom, SAP, Esri, IBM, Hexagon, Microsoft, Google LLC, SuperMap Software, Bentley Systems, and Trimble Navigation. Key drivers for this market are: Realtime GIS data analyticsCloud-based GIS solutionsIntegration with IoT devicesLocation intelligence for smart citiesGeospatial data management . Potential restraints include: Technological advancements, growing demand for location-based services; increasing adoption in various industries; government initiatives and cloud computing adoption .
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Discover the booming Software Geographic Information Systems (GIS) market! This in-depth analysis reveals key trends, growth drivers, and leading companies shaping the future of location intelligence, projecting a significant expansion in the coming years. Learn about market size, CAGR, and regional breakdowns.
Facebook
Twitter
According to our latest research, the global GIS software market size reached USD 9.4 billion in 2024, demonstrating robust expansion driven by digital transformation across multiple industries. The market is anticipated to grow at a CAGR of 12.3% from 2025 to 2033, with the forecasted market size expected to reach USD 29.7 billion by 2033. This impressive growth trajectory is primarily fueled by increasing adoption of spatial analytics, the proliferation of IoT devices, and the rising need for real-time geospatial data across sectors such as government, utilities, and transportation.
One of the principal growth factors underpinning the GIS software market is the rapid digitalization of infrastructure and asset management worldwide. As organizations seek to optimize operations, reduce costs, and improve decision-making processes, GIS software has become indispensable for integrating spatial data with business intelligence. The utility sector, for instance, leverages GIS solutions to manage grid assets, monitor outages, and plan network expansions efficiently. The widespread integration of GIS with enterprise resource planning (ERP) and customer relationship management (CRM) systems further enhances operational visibility and data-driven strategies. Additionally, the growing demand for location-based services in urban planning and smart city initiatives has significantly contributed to the expansion of the GIS software market.
Another significant driver is the evolution of GIS technology itself, particularly the transition from traditional desktop software to cloud-based and mobile GIS solutions. Cloud deployment has democratized access to advanced geospatial tools, enabling small and medium enterprises (SMEs) as well as large organizations to leverage GIS capabilities without heavy upfront investments in IT infrastructure. The rise of cloud-native GIS platforms has accelerated collaboration, scalability, and real-time data sharing, which is essential for dynamic industries like transportation and logistics. Moreover, advancements in artificial intelligence and machine learning have enhanced the analytical power of GIS software, allowing for predictive modeling, automated mapping, and improved spatial data visualization.
The increasing emphasis on environmental monitoring and sustainable development is also propelling market growth. Governments and environmental agencies utilize GIS software for land use planning, disaster management, and climate change mitigation projects. The ability to analyze spatial patterns and predict environmental impacts is critical for designing resilient infrastructure and resource management strategies. The agriculture sector, in particular, has embraced GIS for precision farming, crop monitoring, and supply chain optimization, further expanding the application scope of GIS software. This convergence of technological innovation and sustainability imperatives is expected to sustain high growth rates in the GIS software market over the forecast period.
From a regional perspective, North America continues to dominate the global GIS software market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The presence of leading GIS vendors, early adoption of advanced technologies, and strong government support for smart infrastructure projects have positioned North America at the forefront of market expansion. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid urbanization, infrastructure investments, and increasing digital literacy. Countries such as China, India, and Japan are investing heavily in GIS-enabled solutions for urban planning, disaster management, and transportation, signaling a significant shift in the global market landscape.
The Geographic Information System (GIS) plays a crucial role in the digital transformation journey of many industries. By providing a framework for gathering, managing, and analyzing spatial and geographic data, GIS helps organizations make informed decisions. This technology is not only pivotal in urban planning and environmental conservation but also in enhancing operational efficiencies across various sectors. For instance, in the transportation industry, GIS is used for route optimization and traffic management, whi
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.