Delhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in the largest city (% of urban population) in India was reported at 6.3201 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
The population in New Delhi was approximately **** million, the most among the leading Indian cities in 2019. Mumbai and Kolkata rounded up the three most populated cities across the country that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays male population (people) by capital city using the aggregation sum in India. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in largest city in India was reported at 33807403 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Japan’s largest city, greater Tokyo, had a staggering 37.19 million inhabitants in 2023, making it the most populous city across the Asia-Pacific region. India had the second largest city after Japan with a population consisting of approximately 33 million inhabitants. Contrastingly, approximately 410 thousand inhabitants populated Papua New Guinea's largest city in 2023. A megacity regionNot only did Japan and India have the largest cities throughout the Asia-Pacific region but they were among the three most populated cities worldwide in 2023. Interestingly, over half on the world’s megacities were situated in the Asia-Pacific region. However, being home to more than half of the world’s population, it does not seem surprising that by 2025 it is expected that more than two thirds of the megacities across the globe will be located in the Asia Pacific region. Other megacities are also expected to emerge within the Asia-Pacific region throughout the next decade. There have even been suggestions that Indonesia’s Jakarta and its conurbation will overtake Greater Tokyo in terms of population size by 2030. Increasing populationsIncreased populations in megacities can be down to increased economic activity. As more countries across the Asia-Pacific region have made the transition from agriculture to industry, the population has adjusted accordingly. Thus, more regions have experienced higher shares of urban populations. However, as many cities such as Beijing, Shanghai, and Seoul have an aging population, this may have an impact on their future population sizes, with these Asian regions estimated to have significant shares of the population being over 65 years old by 2035.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban population (people) by capital city using the aggregation sum in India. The data is about countries per year.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
It contains latitudes and longitudes ,population of major cities of India.
https://simplemaps.com/data/in-cities
I wanted to create interactive maps for one of my project so i created this dataset.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Urban population (% of total population) in India was reported at 36.87 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Urban population (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Mumbai, India metro area from 1950 to 2025.
As per the Census data dated 2011, the slum dwellers population in Mumbai was the highest among all other major metropolitan cities of India, at around ************. Hyderabad and Delhi followed it. A total of about ** million people were estimated to be living in slums across the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban population living in areas where elevation is below 5 meters (% of total population) by capital city using the aggregation average, weighted by population in India. The data is about countries per year.
In India, the share of the population that earned at least the equivalent of the highest ** percent of global income earners as of 2022 in purchasing power parity (PPP) terms was ** percent. Hyderabad topped the list with the highest share of middle-class and above category of consumers. Cities from south India topped the list with the first four ranks, followed by the national capital, Delhi.
In 2023, approximately a third of the total population in India lived in cities. The trend shows an increase of urbanization by more than 4 percent in the last decade, meaning people have moved away from rural areas to find work and make a living in the cities. Leaving the fieldOver the last decade, urbanization in India has increased by almost 4 percent, as more and more people leave the agricultural sector to find work in services. Agriculture plays a significant role in the Indian economy and it employs almost half of India’s workforce today, however, its contribution to India’s GDP has been decreasing while the services sector gained in importance. No rural exodus in sightWhile urbanization is increasing as more jobs in telecommunications and IT are created and the private sector gains in importance, India is not facing a shortage of agricultural workers or a mass exodus to the cities yet. India is a very densely populated country with vast areas of arable land – over 155 million hectares of land was cultivated land in India as of 2015, for example, and textiles, especially cotton, are still one of the major exports. So while a shift of the workforce focus is obviously taking place, India is not struggling to fulfill trade demands yet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays death rate (per 1,000 people) by capital city using the aggregation average, weighted by population in India. The data is about countries per year.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A list of new and ancient temples in India. This list contains - temple name - temple description - location - location co-ordinates - distance from Mumbai - distance from New Delhi - distance from Chennai - distance from Kolkata
Note: Regarding the distance, I only chose the top 4 metro cities (by population) in India. Please feel free to add any other city of your choice.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global smart city market size was estimated at $500 billion in 2023 and is projected to reach $3 trillion by 2032, growing at a compound annual growth rate (CAGR) of 23%. This remarkable growth is driven by rapid urbanization, technological advancements, and increasing government initiatives aimed at sustainable development. The convergence of IoT, AI, and data analytics is playing a pivotal role in transforming urban landscapes into interconnected, efficient ecosystems.
One of the primary growth factors of the smart city market is the accelerated pace of urbanization. With more than half of the world’s population now residing in urban areas, cities face increasing pressure to improve infrastructure and services. Smart city technologies offer solutions for efficient resource management, enhanced public safety, and improved quality of life. The need for effective urban planning and sustainable development is pushing governments to adopt smart city initiatives at an unprecedented rate.
Advancements in technology, particularly in IoT, AI, and big data, are significantly contributing to the smart city market's expansion. IoT sensors and devices facilitate real-time data collection, enabling cities to monitor and manage resources such as water, electricity, and waste more efficiently. AI and data analytics are used to interpret this data, providing actionable insights that help in optimizing urban operations, reducing costs, and enhancing citizen services. The integration of these technologies is creating a symbiotic relationship between the digital and physical worlds, driving the evolution of smart cities.
Government support and initiatives are also major catalysts for the growth of the smart city market. Various governments around the world are investing heavily in smart city projects to address urban challenges such as traffic congestion, pollution, and energy consumption. For instance, the European Union has earmarked substantial funding for smart city projects under its Horizon 2020 program. Similarly, countries like China and India have launched extensive smart city missions aimed at transforming urban areas into technologically advanced, sustainable habitats.
Regionally, North America and Europe are leading the smart city market, owing to their advanced technological infrastructure and significant government investments. However, Asia Pacific is expected to exhibit the highest growth rate during the forecast period. Rapid urbanization, coupled with increasing government initiatives in countries like China, India, and Japan, is driving the smart city market in this region. Latin America and the Middle East & Africa are also showing promising growth, supported by improving economic conditions and increasing focus on sustainable development.
The smart city market is segmented into three primary components: hardware, software, and services. Each of these components plays a crucial role in enabling and enhancing the various functionalities of a smart city. Hardware components include sensors, smart meters, and communication devices, among others. These devices are essential for collecting real-time data from various urban environments, which is then used to monitor and manage city operations.
Software solutions are integral to the smart city market as they provide the platforms and applications needed to analyze and interpret the data collected by hardware devices. These software solutions enable various functions such as traffic management, energy management, and public safety. They also offer predictive analytics capabilities, which help city administrators anticipate and mitigate potential issues before they escalate. The increasing complexity and volume of data generated by smart cities necessitate robust software solutions to manage and analyze this data effectively.
Services are another critical component of the smart city market. These include consulting services, system integration, and managed services, which are essential for the successful implementation and operation of smart city projects. Consulting services help cities identify their specific needs and design customized smart city solutions. System integration services ensure that various hardware and software components work seamlessly together, while managed services provide ongoing support and maintenance to ensure the smooth functioning of smart city systems.
The hardware segment is expected to account for a significant share of the smart city market, driv
The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.
The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.
The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.
National
The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.
Sample survey data
SAMPLE DESIGN
The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.
SAMPLE SIZE AND ALLOCATION
The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.
The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).
THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.
Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.
In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.
THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.
All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.
Face-to-face
Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Bangalore, India metro area from 1950 to 2025.
Delhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.