Facebook
TwitterIn March 2024, Google.com was the leading website in the United States. The search platform accounted for over 19 percent of desktop web traffic in the United States, ahead of second-ranked YouTube.com with 10.71 percent.
Facebook
TwitterA dataset comparing features, pricing, and ratings of the top sites to buy website traffic in 2025: Google Ads, Facebook Ads, PropellerAds, and SparkTraffic.
Facebook
TwitterIn November 2024, search platform Google.com was the top ranking website in Canada, with average monthly traffic of 2.71 billion visits. YouTube ranked second with 1.5 billion visits. Reddit.com ranked third, with total monthly traffic of 301 million visits.
Facebook
TwitterIn November 2021, the most visited website in Sweden was Google.com, with total monthly traffic exceeding 107 million visits. Aftonbladet.se came in second place with 38.2 million monthly visits, followed by Expressen.se with 38.1 million total visits during the month.
Facebook
TwitterIn November 2024, Google.com held the top spot in India's website rankings, averaging over **** billion monthly visits. YouTube ranked second, with traffic of **** billion visits, while social platforms Instagram.com and Facebook.com followed with *** million and *** million monthly visits each. Internet penetration In the past decade, India has witnessed a remarkable transformation in its digital landscape. This substantial expansion has resulted in extensive digital connectivity, with more than **** of India's *** billion citizens now enjoying internet access. India ranked **** on the Digital Quality of Life Index in 2023, which revealed electronic infrastructure as one of the country’s strengths. YouTube in India As of 2025, India had the world’s largest YouTube user base, figuring over *** million users. The video platform caters to the nation’s tech-savvy denizens as an educational resource and a source of entertainment. Moreover, YouTube has evolved into a dynamic space for digital marketing, especially harnessing the consumer base segment aged below 32 years.
Facebook
TwitterA dataset comparing features, pricing, and ratings of the top 4 traffic bots in 2025: SparkTraffic (4.5/5), TrafficBot.co (2.5/5), Traffic-Bot.com (3.0/5), and EpicTrafficBot (3.0/5).
Facebook
TwitterIn May 2020, YouTube generated over 5.3 billion global visits via organic search traffic. Second-ranked Wikipedia accumulated less than half of that, claiming 2.2 billion organic search visits. Social network Facebook rounded off the top properties with more than a billion organic search visits during the measured period.
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
amex-travel.top is ranked #1581 in ES with 812.96K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://sr01.toolswala.net/_www/company/legal/terms-of-service/https://sr01.toolswala.net/_www/company/legal/terms-of-service/
bv4.top is ranked #393215 in PT with 72 Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
1trk.top is ranked #6525 in JP with 811.22K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset originates from DataCamp. Many users have reposted copies of the CSV on Kaggle, but most of those uploads omit the original instructions, business context, and problem framing. In this upload, I’ve included that missing context in the About Dataset so the reader of my notebook or any other notebook can fully understand how the data was intended to be used and the intended problem framing.
Note: I have also uploaded a visualization of the workflow I personally took to tackle this problem, but it is not part of the dataset itself.
Additionally, I created a PowerPoint presentation based on my work in the notebook, which you can download from here:
PPTX Presentation
From: Head of Data Science
Received: Today
Subject: New project from the product team
Hey!
I have a new project for you from the product team. Should be an interesting challenge. You can see the background and request in the email below.
I would like you to perform the analysis and write a short report for me. I want to be able to review your code as well as read your thought process for each step. I also want you to prepare and deliver the presentation for the product team - you are ready for the challenge!
They want us to predict which recipes will be popular 80% of the time and minimize the chance of showing unpopular recipes. I don't think that is realistic in the time we have, but do your best and present whatever you find.
You can find more details about what I expect you to do here. And information on the data here.
I will be on vacation for the next couple of weeks, but I know you can do this without my support. If you need to make any decisions, include them in your work and I will review them when I am back.
Good Luck!
From: Product Manager - Recipe Discovery
To: Head of Data Science
Received: Yesterday
Subject: Can you help us predict popular recipes?
Hi,
We haven't met before but I am responsible for choosing which recipes to display on the homepage each day. I have heard about what the data science team is capable of and I was wondering if you can help me choose which recipes we should display on the home page?
At the moment, I choose my favorite recipe from a selection and display that on the home page. We have noticed that traffic to the rest of the website goes up by as much as 40% if I pick a popular recipe. But I don't know how to decide if a recipe will be popular. More traffic means more subscriptions so this is really important to the company.
Can your team: - Predict which recipes will lead to high traffic? - Correctly predict high traffic recipes 80% of the time?
We need to make a decision on this soon, so I need you to present your results to me by the end of the month. Whatever your results, what do you recommend we do next?
Look forward to seeing your presentation.
Tasty Bytes was founded in 2020 in the midst of the Covid Pandemic. The world wanted inspiration so we decided to provide it. We started life as a search engine for recipes, helping people to find ways to use up the limited supplies they had at home.
Now, over two years on, we are a fully fledged business. For a monthly subscription we will put together a full meal plan to ensure you and your family are getting a healthy, balanced diet whatever your budget. Subscribe to our premium plan and we will also deliver the ingredients to your door.
This is an example of how a recipe may appear on the website, we haven't included all of the steps but you should get an idea of what visitors to the site see.
Tomato Soup
Servings: 4
Time to make: 2 hours
Category: Lunch/Snack
Cost per serving: $
Nutritional Information (per serving) - Calories 123 - Carbohydrate 13g - Sugar 1g - Protein 4g
Ingredients: - Tomatoes - Onion - Carrot - Vegetable Stock
Method: 1. Cut the tomatoes into quarters….
The product manager has tried to make this easier for us and provided data for each recipe, as well as whether there was high traffic when the recipe was featured on the home page.
As you will see, they haven't given us all of the information they have about each recipe.
You can find the data here.
I will let you decide how to process it, just make sure you include all your decisions in your report.
Don't forget to double check the data really does match what they say - it might not.
| Column Name | Details |
|---|---|
| recipe | Numeric, unique identifier of recipe |
| calories | Numeric, number of calories |
| carbohydrate | Numeric, amount of carbohydrates in grams |
| sugar | Numeric, amount of sugar in grams |
| protein | Numeric, amount of prote... |
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
papalol.top is ranked #6229605 in US with 102 Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
m-pays.top is ranked #10406 in KH with 3.94K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://sem3.heaventechit.com/company/legal/terms-of-service/https://sem3.heaventechit.com/company/legal/terms-of-service/
freemagazines.top is ranked #42249 in US with 1.24M Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterGoogle.com recorded an average monthly traffic of **** billion visits in Japan from September to November 2024, which made it the most visited website. It was followed by Yahoo.co.jp and Youtube.com.
Facebook
TwitterTop 25 Daily Page Views for the main website of Los Angeles
Facebook
Twitterhttps://sr01.toolswala.net/_www/company/legal/terms-of-service/https://sr01.toolswala.net/_www/company/legal/terms-of-service/
mangaweb.top is ranked #5849 in JP with 480.51K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://sem3.heaventechit.com/company/legal/terms-of-service/https://sem3.heaventechit.com/company/legal/terms-of-service/
netnaija.top is ranked #3896 in NG with 66.98K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
irey77.top is ranked #4418 in MX with 173.17K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterIn March 2024, Google.com was the leading website in the United States. The search platform accounted for over 19 percent of desktop web traffic in the United States, ahead of second-ranked YouTube.com with 10.71 percent.