This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
Source: https://carto.nationalmap.gov/arcgis/rest/services/contours/MapServerThe USGS Elevation Contours service from The National Map displays contours generated for the United States at various scales. Small-scale contours were created by USGS TNM from 1 arc-second data with 100-meter contours, and are visible at 1:600,000 and smaller scales. Medium-scale contours were created by USGS EROS from 1/3-arc-second data with 100-foot intervals, and are visible between 1:150,000 and 1:600,000. Additional medium-scale contours were created by USGS EROS from 1/3-arc-second data with 50-foot intervals, and are visible between 1:50,000 and 1:150,000. Large scale contours are updated every quarter, and are created by USGS TNM for the 7.5' 1:24,000-scale US Topo digital map series. These contours are derived from 1/3 arc-second or better resolution data, and are visible at scales 1:50,000 and larger. Large scale contour intervals are variable across the United States depending on complexity of topography, and as contours are generated per US Topo quadrangle, lines may not match across quad boundaries. The National Map download client allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to https://www.usgs.gov/3d-elevation-program. See https://apps.nationalmap.gov/help for assistance with The National Map viewer, download client, services, or metadata.
This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.
2 foot contours (2008) provided as shapefile. This dataset may delay in downloading. Optionally download geodatabase. This dataset contains locations and attributes of 2-ft interval topography data, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. In addition to the 2-ft contour data ancillary datasets containing an ESRI geodatabase of masspoints and breaklines.
This vector tile layer presents the World Topographic Map style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers, including Topographic (with Contours and Hillshade) multisource tile layer.Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
20 foot contours (2008). This dataset contains locations and attributes of 20-ft interval topography data, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. In addition to the 2-ft contour data ancillary datasets containing an ESRI geodatabase of masspoints and breaklines.
Click here to access the data directly from the Illinois State Geospatial Data Clearinghouse.This page from the Illinois Geospatial Data Clearinghouse includes download links for the following Lake County datasets specific to the 2017 LiDAR capture:BreaklinesLASTile IndexDerivativesMetadata
Complete Topographic dataset in shapefile format. Consume this dataset if you wish to download the entire Topographic dataset at once.
This 3D basemap presents OpenStreetMap (OSM) and other data sources and is hosted by Esri using the Topographic style.The Buildings layer references the Esri 3D Buildings scene layer, which includes commercial 3D buildings data acquired from TomTom and Maxar, in addition to Esri Community Maps and Overture Maps Foundation data. The Esri 3D Buildings scene layer is an alternative to the OpenStreetMap (OSM) 3D Buildings scene layer, particularly for areas where the OSM data is missing accurate 3D attributes.Esri created the Places and Labels, Trees, and Topographic layers from the Daylight map distribution of OSM data, which was supported by Meta and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.
Important Note: This item is in mature support. There are new versions of basemaps available for your use. Esri recommends updating your maps and apps to use the appropriate new version. This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Topographic Map service description.
A bathymetric survey of Gillham Lake, Arkansas, was conducted in late June 2018 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for sonar surveys like those described by Wilson and Richards (2006) and Richards and Huizinga (2018). Data from the bathymetric survey were combined with data from an aerial Light Detection And Ranging (LiDAR) survey conducted in 2016 by the National Resources Conservation Service (U.S. Geological Survey, 2017) to create a digital elevation model (DEM) of the extent of the flood pool of the lake and compute volume (storage capacity) of the lake at 1-foot increments in water surface elevation from 431-559 feet (ft) above the North American Vertical Datum of 1988 (NAVD88) and for conservation pool elevation 502.1 ft and flood pool elevation 569.1 ft. Products in this data release are stored within an Esri file geodatabase and include: 1) point datasets of the bathymetric and LiDAR surveys; 2) point data representing the stream channels of select tributaries where bathymetric data were sparse, digitized from historical topographic maps; 3) clipping polygons representing the extent of the LiDAR data the and flood pool; 4) Two DEMs, one representing the extent of the LiDAR data used in the study and the other representing the extent of the flood pool; 5) bathymetric contours at 10-ft intervals, derived from the DEM of the extent of the LiDAR and clipped to the extent of flood pool; and 6) a table of volume (storage capacity) of the lake. A third DEM, representing the extent of the LiDAR, is provided in GeoTIFF format for use with softwares other than Esri ArcGIS. In April 2019, it was discovered that some of the areas in shallow and/or tree-ridden areas of the lake that had not been surveyed needed additional data in order to generate a more topographically realistic surface. Additional data were interpolated from a combination of elevation data from pre-impoundment topographic maps and from the point datasets of the bathymetric and LiDAR surveys. The interpolated data was added to the geodatabase, the final products re-created, metadata edited accordingly, and the data release reviewed. In response to the second review, a vertical datum discrepancy between the single beam and multi-beam bathymetric datasets was addressed and select areas of erroneous bathymetric data were edited. First release: October 2018; revised April 2020 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf Water Science Center using the "Point of Contact" link on the landing page on ScienceBase. References: Richards, J.M. and Huizinga, R.J., 2018, Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017: U.S. Geological Survey Scientific Investigations Map 3409: 1 sheet, https://doi.org/10.3133/sim3409; U.S. Geological Survey, 2017, Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection: U.S. Geological Survey, https://nationalmap.gov/3DEP; Wilson, G.L., and Richards, J.M., 2006, Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs: U.S. Geological Survey Scientific Investigations Report 2006-5208, https://pubs.usgs.gov/sir/2006/5208/.
The Topographic (US Edition) web map is presented with a classic Esri topographic map style including a shaded relief layer for added context. This comprehensive topographic map includes landform labels, highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. This basemap is available in the United States Vector Basemaps gallery and uses the World Topographic Map (US Edition) vector tile layer and World Hillshade. For a topographic basemap that includes vector contours and vector hillshade, see the Topographic (Vector) web map.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources.
The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.
0.6 meter contours. This dataset contains locations and attributes of 0.6 meter interval topography data, created using bare earth points from the lidar point cloud data. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
Raw DEM and Soils data
Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
ArcGIS Map Packages
Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web
0.6 meter contours. This dataset contains locations and attributes of 0.6 meter (1.9685 feet) interval topography data, created using bare earth points from the lidar point cloud data.Voids exist in the data due to data redaction conducted under the guidance of the United States Secret Service. All lidar data returns and collected data were removed from the dataset based on the redaction footprint shapefile generated in 2017.
World Elevation layers are compiled from many authoritative data providers, and are updated quarterly. This map shows the extent of the various datasets comprising the World Elevation dynamic (Terrain,TopoBathy) and tiled (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) services.The tiled services (Terrain 3D,TopoBathy 3D,World Hillshade,World Hillshade (Dark)) also include an additional data source from Maxar's Precision3D covering parts of the globe.Note: ArcGIS Elevation service, Terrain 3D (for Export) and TopoBathy 3D (for Export) does not include Maxar Precision3D and Airbus WorldDEM4Ortho.To view the all the sources in a table format, check out World Elevation Data Sources Table.Topography sources listed in the table are part of Terrain, TopoBathy, Terrain 3D, TopoBathy 3D, World Hillshade and World Hillshade (Dark), while bathymetry sources are part of TopoBathy and TopoBathy 3D only.Disclaimer: Data sources are not to be used for navigation/safety at sea and in air.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York