The Minnesota Geospatial Image Service provides versatile access to the USGS Topographic Map Series layers (DRG format) using a Web Map Service (WMS). Using this service eliminates the need to download and store these background layers locally. Three scales of USGS topographic maps are available through this service: 1:250,000, 1:100,000, and 1:24,000. The maps are 1949-1994 vintage.
For more information:
- How to use a WMS: https://www.mngeo.state.mn.us/chouse/wms/how_to_use_wms.html
- Technical specifications for using this service: https://www.mngeo.state.mn.us/chouse/wms/wms_image_server_specs.html
- About topo maps: https://www.mngeo.state.mn.us/chouse/elevation/topo_maps.html
- USGS services providing access to current topo maps: https://apps.nationalmap.gov/services/
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
2-foot and 10-foot elevation contours derived from the Spring 2012 Minnesota Department of Natural Resources (MN DNR) LiDAR dataset.
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1 meter (m; 3.28084 ft) cell size and was created from Lidar data representing beach topography and sonar data representing bathymetry extending approximately 700-800 m offshore. The data cover an approximately 1.75 square kilometer survey area. Lidar data were collected November 01, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected October 31-November 01, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected November 01, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006). This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
10 foot topography map of Scott County, Minnesota.
Fugro Horizons Inc. acquired highly accurate Light Detection and Ranging (lidar) elevation data for the Twin Cities metropolitan region in east-central Minnesota in Spring and Fall 2011, with some reflights in Spring 2012. The data cover Anoka, Benton, Carver, Dakota, Goodhue, Hennepin, Isanti, Kanabec, Meeker, Mille Lacs, Morrison, Ramsey, Scott, Sherburne and Washington counties.
Most of the data was collected at 1.5 points/square meter. Smaller areas were collected with 2 points/square meter and with 8 points/square meter:
1. 1.5 points/square meter covers Morrison, Mille Lacs, Benton, Isanti, Sherburne, Anoka, Meeker, Hennepin, Washington, Carver, Scott, and Goodhue counties.
2. 2 points/square meter covers the Dakota Block (southern 2/3 of Dakota County)
3. 8 points/square meter covers portions of Minneapolis/St. Paul and the City of Maple Grove
See map of block boundaries: https://www.mngeo.state.mn.us/chouse/elevation/metro_data_delivery_dates.pdf
Data are in the UTM Zone 15 coordinate system, NAD83 (HARN), NAVD88 Geoid09, meters. The tiling scheme is 16th USGS 1:24,000 quadrangle tiles.
The vendor delivered the data to the Minnesota Department of Natural Resources (DNR) in several formats:
1. One-meter digital elevation model
2. Edge-of-water breaklines
3. Classified LAS formatted point cloud data
DNR staff quality-checked the data and created three additional products: two-foot contours, building outlines and hillshades.
This metadata record was created at the Minnesota Geospatial Information Office using information supplied by the vendor and by DNR.
This map shows the elevation of the bedrock surface (Bedrock topography) across the state of Minnesota. This is important geologic information in identifying potential sources of groundwater and pollution sensitivity. The bedrock surface is an erosional surface comprised of Cretaceous (Mesozoic) rocks and sediments, Paleozoic rocks, and Precambrian rocks. This bedrock topography data is a raster showing elevation of the bedrock surface, in feet, across the state of Minnesota and includes that part of Minnesota that lies in the western part of the Lake Superior basin. It does not include tribal areas of Grand Portage and Mille Lac as per the MGS's agreements with the tribes.
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected July 23, 2020 using a boat mounted Velodyne unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
A digital raster graphic (DRG) is a scanned image of an U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The map is scanned at a minimum resolution of 250 dots per inch.
DRG's are created by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the UTM projection. Colors are standardized to remove scanner limitations and artifacts. The average data set size is about 6 megabytes in Tagged Image File Format (TIFF) with PackBits compression. DRG's can be easily combined with other digital cartographic products such as digital elevation models (DEM) and digital orthophoto quadrangles (DOQ).
DRG's are stored as rectified TIFF files in geoTIFF format. GeoTIFF is a relatively new TIFF image storage format that incorporates georeferencing information in the header. This allows software, such as ArcView, ARC/INFO, or EPPL7 to reference the image without an additional header or world file.
Within the Minnesota Department of Natural Resources Core GIS data set the DRG's have been processed to be in compliance with departmental data standards (UTM Extended Zone 15, NAD83 datum) and the map collar information has been removed to facilitate the display of the DRG's in a seamless fashion.
These DRG's were clipped and transformed to UTM Zone 15 using EPPL7 Raster GIS.
This location is part of the Arizona Mineral Industry Location System (AzMILS), an inventory of mineral occurences, prospects and mine locations in Arizona. SantaCruz164A is located in T23S R16E Sec 31 NW in the Nogales - 15 Min quad. This collection consists of various reports, maps, records and related materials acquired by the Arizona Department of Mines and Mineral Resources regarding mining properties in Arizona. Information was obtained by various means, including the property owners, exploration companies, consultants, verbal interviews, field visits, newspapers and publications. Some sections may be redacted for copyright. Please see the access statement.
This dataset is a pre-nourishment digital elevation model (DEM) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected June 22-24, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
Grid image of bedrock topography in Minnesota. Gridded values are of the elevation of the bedrock topographic surface. This surface includes the top of Cretaceous rocks. Units are feet above mean sea level. The grid was generated in 2010 from drill hole data and hand-drawn contours in some areas, also derived from drill hole data. The data are available as ArcGIS layer file and Web Coverage Service (WCS) for raster coverage. This resource was provided by the Minnesota Geological Survey and made available for distribution through the National Geothermal Data System.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
These data are digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, near the Superior entry, Duluth, Minnesota. The DEMs have 1 meter (m; 3.28084 ft) and/or 10 m (32.8084 ft) cell size and was created from a LAS dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry for an approximate 1.78 square kilometer survey area. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.055 meters (m); multibeam sonar, 0.511 m; single-beam sonar, 1.687 m. Lidar data were collected November 01, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected October 31-November 01, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected November 01, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006). This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
Map Catalog is powered by the Memento Server software and provides a continuous view across multiple geospatial PDFs. The PDF maps currently available are 1K USNG (topo and aerial) maps from four metro counties(Anoka, Carver, Dakota and Ramsey), 1K USNG Topo of cities and state parks in Minnesota, 10K USNG Aerial maps for Minnesota, US Topo for the metro and Dakota County Park maps, City Street maps and Half Section maps. Map update frequency varies.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
An extract of 9 USGS topographic maps, accessed via the Living Atlas Historical Topo Map Explorer. 1967 Centerville 1:24,000;1967 Circle Pines 1:24,000;1967 New Brighton 1:24,000;1967 White Bear Lake West 1:24,000;1955 Anoka 1:62,500;1955 Isanti 1:62,500;1955 New Brighton 1:62,500;1902 White Bear 1:62,500;1916 St Francis 1:62,500
The Minnesota Geospatial Image Service provides versatile access to the USGS Topographic Map Series layers (DRG format) using a Web Map Service (WMS). Using this service eliminates the need to download and store these background layers locally. Three scales of USGS topographic maps are available through this service: 1:250,000, 1:100,000, and 1:24,000. The maps are 1949-1994 vintage.
For more information:
- How to use a WMS: https://www.mngeo.state.mn.us/chouse/wms/how_to_use_wms.html
- Technical specifications for using this service: https://www.mngeo.state.mn.us/chouse/wms/wms_image_server_specs.html
- About topo maps: https://www.mngeo.state.mn.us/chouse/elevation/topo_maps.html
- USGS services providing access to current topo maps: https://apps.nationalmap.gov/services/