This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.
Ecology created the GIS statewide river mile point layer in March 2007 by digitizing the river mile points depicted on the USGS 7½ minute (24k) topographic quadrangle maps. Some of the rivers have gaps in the river mile progression because several of the quadrangle maps do not have any river mile points, while a few were missing a point or two.In November 2014 Ecology added river mile points for the missing areas using Washington Department of Fish and Wildlife's (WDFW) 1975 Stream Catalog, which only covers WRIA's 1 through 24. The Stream Catalog shows river miles for nearly every stream; however, only those water courses that have river miles from the USGS quadrangle maps were added.The field SOURCE denotes the source of the data point, USGS or WDFW. Discrepancies between the USGS and WDFW are documented in the Supplemental Information section.
These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as â mineâ symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 500,000-plus point and polygon mine symbols from approximately 67,000 maps of 22 western states has been completed: Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Idaho (ID), Iowa (IA), Kansas (KS), Louisiana (LA), Minnesota (MN), Missouri (MO), Montana (MT), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Oregon (OR), South Dakota (SD), Texas (TX), Utah (UT), Washington (WA), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the western U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
Version 10.0 (Alaska, Hawaii and Puerto Rico added) of these data are part of a larger U.S. Geological Survey (USGS) project to develop an updated geospatial database of mines, mineral deposits, and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, have been digitized from the 7.5-minute (1:24,000, 1:25,000-scale; and 1:10,000, 1:20,000 and 1:30,000-scale in Puerto Rico only) and the 15-minute (1:48,000 and 1:62,500-scale; 1:63,360-scale in Alaska only) archive of the USGS Historical Topographic Map Collection (HTMC), or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. The compilation of 725,690 point and polygon mine symbols from approximately 106,350 maps across 50 states, the Commonwealth of Puerto Rico (PR) and the District of Columbia (DC) has been completed: Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate timeline of when these activities occurred. These data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. These data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.Datasets were developed by the U.S. Geological Survey Geology, Geophysics, and Geochemistry Science Center (GGGSC). Compilation work was completed by USGS National Association of Geoscience Teachers (NAGT) interns: Emma L. Boardman-Larson, Grayce M. Gibbs, William R. Gnesda, Montana E. Hauke, Jacob D. Melendez, Amanda L. Ringer, and Alex J. Schwarz; USGS student contractors: Margaret B. Hammond, Germán Schmeda, Patrick C. Scott, Tyler Reyes, Morgan Mullins, Thomas Carroll, Margaret Brantley, and Logan Barrett; and by USGS personnel Virgil S. Alfred, Damon Bickerstaff, E.G. Boyce, Madelyn E. Eysel, Stuart A. Giles, Autumn L. Helfrich, Alan A. Hurlbert, Cheryl L. Novakovich, Sophia J. Pinter, and Andrew F. Smith.USMIN project website: https://www.usgs.gov/USMIN
Campus Basemap in the World Topographic Map cartographic style. On CougGIS.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Citation: Horton, John D., and San Juan, Carma A., 2019, Prospect- and Mine-Related Features from U.S. Geological Survey 7.5- and 15-Minute Topographic Quadrangle Maps of the United States (ver. 4.0, November 2019): U.S. Geological Survey data release, https://doi.org/10.5066/F78W3CHG.Version 4.0 of these data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 637,000-plus point and polygon mine symbols from approximately 88,000 maps across 35 states has been completed: Alabama (AL), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Florida (FL), Georgia (GA), Idaho (ID), Iowa (IA), Illinois (IL), Indiana (IN), Kansas (KS), Kentucky (KY), Louisiana (LA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), North Carolina (NC), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Ohio (OH), Oregon (OR), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Washington (WA), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done. Datasets were developed by the U.S. Geological Survey Geology, Geophysics, and Geochemistry Science Center (GGGSC). Compilation work was completed by USGS student contractors: Germán Schmeda, Patrick C. Scott, William Gnesda, Margaret Hammond, Tyler Reyes, Morgan Mullins, Thomas Carroll, Margaret Brantley, and Logan Barrett; and by USGS personnel Damon Bickerstaff, Stuart A. Giles and E.G. Boyce. First release: August 4, 2016 Revised: December 1, 2017 (ver. 1.0) Revised: April 30, 2018 (ver. 2.0) Revised: April 10, 2019 (ver. 3.0) Revised: November 25, 2019 (ver.4.0)
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
The Color Landform Atlas of the United States, Version 2 may be accessed on the World Wide Web at: 'http://fermi.jhuapl.edu/states/states.html'
The following information was abstracted from: 'http://fermi.jhuapl.edu/states/about.html'. Please visit this page for additional information.
Currently the following maps are available for each state (except Alaska and Hawaii, they are coming sometime):
A topographic map optimized to show the
landforms. The same color shading is used
across the country.
A map showing counties in a state. The
background topography has been somewhat
suppressed to allow the county boundaries to
show well.
Satellite images of the state. These have been
obtained here directly from the NOAA weather
satellites and use the AVHRR image data.
An 1895 map of each state. These are from an old
Rand McNally Atlas of the World. Not yet all
available, still scanning
A PostScript map of counties in the state.
These are intended for download and printing on a
PostScript printer.
The first two maps all have the same maximum image length (900 pixels) so the actually scale varies from state to state. Long narrow states also have more detailed subsections available. More maps will be added later.
The elevation key is intended for the topographic maps. The county maps use the same colors but with less contrast. It may be convenient to start another browser window and view the elevation key image at the same time as the map of interest.
The same data and coloring is used for the state maps as for the previous JHU/APL Digital Relief Map of the U.S. which covers the U.S. at a uniform scale in 60 GIF images.
Even though the same color scheme is used as for earlier maps a new coloring algorithm is in use. The coloring for some maps is improved, for others it is not as good. The old coloring algorithm used a median cut technique which did not handle small areas of elevation extremes well. An example problem area is Mt. Washington in New Hampshire, it was miscolored on the previous maps. The new algorithm does a better overall job but has occasional problems along the coast.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Citation: Horton, John D., and San Juan, Carma A., 2019, Prospect- and Mine-Related Features from U.S. Geological Survey 7.5- and 15-Minute Topographic Quadrangle Maps of the United States (ver. 4.0, November 2019): U.S. Geological Survey data release, https://doi.org/10.5066/F78W3CHG.Version 4.0 of these data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 637,000-plus point and polygon mine symbols from approximately 88,000 maps across 35 states has been completed: Alabama (AL), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Florida (FL), Georgia (GA), Idaho (ID), Iowa (IA), Illinois (IL), Indiana (IN), Kansas (KS), Kentucky (KY), Louisiana (LA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), North Carolina (NC), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Ohio (OH), Oregon (OR), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Washington (WA), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done. Datasets were developed by the U.S. Geological Survey Geology, Geophysics, and Geochemistry Science Center (GGGSC). Compilation work was completed by USGS student contractors: Germán Schmeda, Patrick C. Scott, William Gnesda, Margaret Hammond, Tyler Reyes, Morgan Mullins, Thomas Carroll, Margaret Brantley, and Logan Barrett; and by USGS personnel Damon Bickerstaff, Stuart A. Giles and E.G. Boyce. First release: August 4, 2016 Revised: December 1, 2017 (ver. 1.0) Revised: April 30, 2018 (ver. 2.0) Revised: April 10, 2019 (ver. 3.0) Revised: November 25, 2019 (ver.4.0)
AbstractThe basin delineation was initially derived using standard watershed tools and DEM's (from NOAA). The computer generated watershed boundary was then manually edited via visual interpretation using topo maps, the DEM files and other watershed boundary maps (notably from the Sea Doc Society). The majority of the editing was in smoothing the original watershed boundary as the auto generated basin was far too detailed for the scale of the map. The smoothing process also removed the ‘raster’ artifacts. For the Salish Sea map the intent was just to show the general boundary as a smooth line that visually follows the topography. Again, the emphasis was for an easy to understand cartographic representation of the basin at a fairly coarse scale, not for exact hydrologic analysis.PurposeFor the purposes of this map & dataset, the Salish Sea was defined as including: Puget Sound, Desolation Sound (note, some BC definitions exclude Desolation Sound), Strait of Juan de Fuca (to the mouth of the Pacific Ocean), Strait of Georgia (which I defined as extending to Johnstone Strait). The Salish Sea polygon and corresponding Basin boundary files were derived for use at approximately 1:1,500,000 (e.g., Salish Sea Map, 2009, http://staff.wwu.edu/stefan/SalishSea.htm).Data creditStefan Freelan, 2009 stefan@wwu.edu 360-650-2949Institute for Spatial Information and AnalysisHuxley College of the Environment, Western Washington UniversityBellingham, WA 98225-9085http://staff.wwu.edu/stefan/SalishSea.htm
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.