Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Coastal Topographic Surveys are height transects that form part of the Anglian Coastal Monitoring Programme. A surveyor using a GNSS (Global Navigation Satellite System) staff will make observations of elevation and usually substrate type at recorded coordinates. This is usually carried out along a fixed transect line, but can be along a grid or, when the staff is mounted to an ATV (All terrain vehicle), a high volume of ‘spot height’ measurements through the survey area. The outputs of this survey are the easting and northing coordinates of each location where a measurement was taken and the elevation in metres above Ordnance Datum (Newlyn). The transect survey data will also contain a chainage position of where along the transects the measurement was taken and a two letter substrate code.
https://vocab.nerc.ac.uk/collection/L08/current/LI/https://vocab.nerc.ac.uk/collection/L08/current/LI/
LIDAR is an airborne terrain mapping system, which uses a laser to measure the distance between the aircraft and the ground. This technique results in the production of cost effective terrain maps with a height accuracy of 10 to 15cm. Typically with spot heights between 1 to 4 metres spatially on the land surface. CASI is used to provide information on the colour of the environment. It is designed to provide a flexible system which is easy to transport and straightforward to install and operate in small aircraft. It can be used for detailed studies of the spectral characteristics of ground or water targets, which are imaged instantaneously in a large number of spectral wavebands (up to 288), covering the visible and near infra-red regions of the spectrum, between 430 nm and 870 nm. Spatial resolution can be varied from one to ten metres, depending on the flying altitude and lens configuration. New LIDAR and CASI data sets are being gathered from parts of England and Wales all the time. For details on coverage and extent contact the National Centre.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
[from EDINA's description of Land-form PANORAMA data: "http://edina.ac.uk/digimap/description/products/panorama.shtml"]
Land-Form PANORAMA is a digital representation of the contours from Ordnance Survey's 1:50 000 scale Landranger maps. Contours are at 10 metre vertical intervals together with breaklines, lakes, coastline and a selection of spot heights to the nearest metre. Digital contour accuracy values are typically better than 3 metres root mean square error.
The Ordnance Survey has used the dataset to derive mathematically a digital terrain-model (DTM) dataset. The dataset consists of a grid of height values at 50 metre intervals interpolated from the contour data. Height values are rounded to the nearest metre. Accuracy varies according to the complexity of the terrain, from 2 metres in a hilly rural area to 3 metres in an urban lowland area. This data is only available for downloading to your machine.
DTM data can be used for terrain analysis of lines of sight and in applications such as visual impact studies, drainage analysis, site planning.
[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
A Digital Terrain Model (DTM) for most of England and Wales provided by Bluesky and made available via the Landmap service, at 5m resolution. The 5m DTM is a photogrammetrically derived product from stereo aerial photography collected between 1999 and 2008. The aerial photography was captured at a resolution of between 10cm and 25cm. A digital elevation model is a digital model or 3D representation of a terrain's surface and, in contrast to a Digital Surface Model (DSM), represents the bare ground surface without any objects like plants and buildings. The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected and hosted a large amount of earth observation data for the majority of the UK, part of which was elevation data. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. When using these data please also add the following copyright statement: © GeoPerspectives supplied by Bluesky yyyy
This webmap combines the GB Topographic style with the GB Hillshade service.Customise this MapBecause this is a vector tile layer, you can customise the map to change its content and symbology. You are able to turn on and off layers and change their symbols. You can open this style in the vector tile style editor, make your changes and save a copy of your modified style to use yourself.As the GB Topographic style is designed to be used in conjunction with the GB Hillshade, it is recommended that after creating you own style you combine it in a webmap with Hillshade service.The map is based primarily on OS Zoomstack data (last updated December 2022).Please send any feedback to VectorTiles@esriuk.com
https://artefacts.ceda.ac.uk/licences/specific_licences/landmap.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/landmap.pdf
Light Detection and Ranging (LiDAR) data was collected by The Geoinformation Group using LiDAR-equipped survey aircraft for the main urban conurbations of England and Wales (including London, Manchester, Birmingham, Liverpool, Newcastle, Edinburgh and Glasgow) as part of the Cities Revealed project, and made available through the Landmap service. The GeoInformation Group (TGG) has processed the data so that they are available as Digital Terrain Models (ground surface only) and Digital Surface/Elevation Models (the ground and all features on it), both geographic databases with height and surface measurement information in the form of regular grids with intervals of 1 or 2 m. In addition, some First Pass and Last Pass data are available. The First Pass data provides height values for the top of the canopy (i.e. buildings, trees etc.) while the Last Pulse data provides height values for the bottom of the canopy and provides information about the shape of the terrain. The data are available in img format. The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected and hosted a large amount of earth observation data for the majority of the UK, part of which was elevation data. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC.
When using the data please also add the following copyright statement: Cities Revealed © The GeoInformation Group yyyy
Living England is a multi-year project which delivers a broad habitat map for the whole of England, created using satellite imagery, field data records and other geospatial data in a machine learning framework. The Living England habitat map shows the extent and distribution of broad habitats across England aligned to the UKBAP classification, providing a valuable insight into our natural capital assets and helping to inform land management decisions. Living England is a project within Natural England, funded by and supports the Defra Natural Capital and Ecosystem Assessment (NCEA) Programme and Environmental Land Management (ELM) Schemes to provide an openly available national map of broad habitats across England.This dataset includes very complex geometry with a large number of features so it has a default viewing distance set to 1:80,000 (City in the map viewer).Process Description:A number of data layers are used to develop a ground dataset of habitat reference data, which are then used to inform a machine-learning model and spatial analyses to generate a map of the likely locations and distributions of habitats across England. The main source data layers underpinning the spatial framework and models are Sentinel-2 and Sentinel-1 satellite data from the ESA Copernicus programme, Lidar from the EA's national Lidar Programme and collected data through the project's national survey programme. Additional datasets informing the approach as detailed below and outlined in the accompanying technical user guide.Datasets used:OS MasterMap® Topography Layer; Geology aka BGS Bedrock Mapping 1:50k; Long Term Monitoring Network; Uplands Inventory; Coastal Dune Geomatics Mapping Ground Truthing; Crop Map of England (RPA) CROME; Lowland Heathland Survey; National Grassland Survey; National Plant Monitoring Scheme; NE field Unit Surveys; Northumberland Border Mires Survey; Sentinel-2 multispectral imagery; Sentinel-1 backscatter imagery; Sentinel-1 single look complex (SLC) imagery; National forest inventory (NFI); Cranfield NATMAP; Agri-Environment HLS Monitoring; Living England desktop validation; Priority Habitat Inventory; Space2 Eye Lens: Ainsdale NNR, State of the Bog Bowland Survey, State of the Bog Dark Peak Condition Survey, State of the Bog Manchester Metropolitan University (MMU) Mountain Hare Habitat Survey Dark Peak, State of the Bog; Moors for the Future Dark Peak Survey; West Pennines Designation NVC Survey; Wetland Annex 1 inventory; Soils-BGS Soil Parent Material; Met Office HadUK gridded climate product; Saltmarsh Extent and Zonation; EA LiDAR DSM & DTM; New Forest Mires Wetland Survey; New Forest Mires Wetland Survey; West Cumbria Mires Survey; England Peat Map Vegetation Surveys; NE protected sites monitoring; ERA5; OS Open Built-up Areas; OS Boundaries dataset; EA IHM (Integrated height model) DTM; OS VectorMap District; EA Coastal Flood Boundary: Extreme Sea Levels; AIMS Spatial Sea Defences; LIDAR Sand Dunes 2022; EA Coastal saltmarsh species surveys; Aerial Photography GB (APGB); NASA SRT (Shuttle Radar Topography Mission) M30; Provisional Agricultural Land Classification; Renewable Energy Planning Database (REPD); Open Street Map 2024.Attribute descriptions: Column Heading Full Name Format Description
SegID SegID Character (100) Unique Living England segment identifier. Format is LEZZZZ_BGZXX_YYYYYYY where Z = release year (2223 for this version), X = BGZ and Y = Unique 7-digit number
Prmry_H Primary_Habitat Date Primary Living England Habitat
Relblty
Reliability
Character (12)
Reliability Metric Score
Mdl_Hbs Model_Habs Interger List of likely habitats output by the Random Forest model.
Mdl_Prb Model_Probs Double (6,2) List of probabilities for habitats listed in ‘Model_Habs’, calculated by the Random Forest model.
Mixd_Sg Mixed_Segment Character (50) Indication of the likelihood a segment contains a mixture of dominant habitats. Either Unlikely or Probable.
Source Source
Description of how the habitat classification was derived. Options are: Random Forest; Vector OSMM Urban; Vector Classified OS Water; Vector EA saltmarsh; LE saltmarsh & QA; Vector RPA Crome, ALC grades 1-4; Vector LE Bare Ground Analysis; LE QA Adjusted
SorcRsn Source_Reason
Reasoning for habitat class adjustment if ‘Source’ equals ‘LE QA Adjusted’
Shap_Ar Shape_Area
Segment area (m2) Full metadata can be viewed on data.gov.uk.
The Preliminary Plot 1: 50 000 scale map serises are the initial topographic maps developed for Kenya. They are nbased on air photographs captured by the Royal Air Force (United Kingdom). They are essentially black an dwhite maps showing a simple interpretation of the key topographic features. CRS: Transverse Mercator, Clarke 1880. Publishers: DCS Directorate of Colonial Surveys (United Kingdom Government); KS Kenya Survey; GSGS War Office (United Kingdom Government); DOS Directorate of Overseas Surveys (United kingdom Government) Except map A37 VI SW South Ndakathima which is in Arc (1960) Clarke (1880)
The GEBCO_2021 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base, Version 2.2 of the SRTM15+ data set between latitudes of 50 degrees South and 60 degrees North. This data set is a fusion of land topography with measured and estimated seafloor topography. This version of SRTM15+ is similar to version 2.1 [Tozer et al., 2020] with minor updates. Version 2.2 uses predicted depths based on the V29 gravity model [Sandwell et al., 2019] and approximately 400 small areas containing suspect data were visually identified and removed from the grid. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2021 Grid represents all data within the 2021 compilation. The compilation of the GEBCO_2021 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets are supplied by the Regional Centers as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The primary GEBCO_2021 grid contains land and ice surface elevation information - as provided for previous GEBCO grid releases. In addition, for the 2021 release a version with under-ice topography/bathymetry information for Greenland and Antarctica is also available. The GEBCO_2021 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
The Preliminary Plot 1: 50 000 scale map serises are the initial topographic maps developed for Kenya. They are nbased on air photographs captured by the Royal Air Force (United Kingdom). They are essentially black an dwhite maps showing a simple interpretation of the key topographic features. CRS: Transverse Mercator, Clarke 1880. Publishers: DCS Directorate of Colonial Surveys (United Kingdom Government); KS Kenya Survey; GSGS War Office (United Kingdom Government); DOS Directorate of Overseas Surveys (United kingdom Government) Except map A37 VI SW South Ndakathima which is in Arc (1960) Clarke (1880)
The Preliminary Plot 1: 50 000 scale map serises are the initial topographic maps developed for Kenya. They are nbased on air photographs captured by the Royal Air Force (United Kingdom). They are essentially black an dwhite maps showing a simple interpretation of the key topographic features. CRS: Transverse Mercator, Clarke 1880. Publishers: DCS Directorate of Colonial Surveys (United Kingdom Government); KS Kenya Survey; GSGS War Office (United Kingdom Government); DOS Directorate of Overseas Surveys (United kingdom Government) Except map A37 VI SW South Ndakathima which is in Arc (1960) Clarke (1880)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The topographic index is a hydrological quantity describing the propensity of the soil at landscape points to become saturated with water as a result of topographic position (i.e. not accounting for other factors such as climate that also affect soil moisture but are accounted for separately). Modern land surface models require a characterisation of the land surface hydrological regime and this parameter allows the use of the TOPMODEL hydrological model to achieve this .This Geographic Information System layer is intended for use as topographic ancillary files for the TOPMODEL routing model option within the Joint UK Land Environment Simulator (JULES) land surface model. The topographic index variable here is directly comparable to the compound topographic index available from United States Geological Survey's Hydro1K at 30 sec resolution. PLEASE NOTE: This dataset is a correction to a previous version which was found to contain errors (doi:10/t7d). In the previous version all pixels north of 4.57 degrees south were shifted consistently 9.3 km to the west. This version is correctly aligned at all points.
Data licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The topographic maps are generated from digital landscape and terrain models and the official real estate cadastre information system ALKIS and visualized according to the nationwide ATKIS signature catalogue. The topographic maps are comprehensive and available in the uniform geodetic reference system and map projection for the state of Brandenburg. They are available as analogue map prints (plots), as raster data and as web services. When using the data, the license conditions must be observed.
Data licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The digital topographic maps are generated from digital landscape and terrain models as well as the official real estate cadastre information system ALKIS and visualized according to the nationwide ATKIS signature catalogue. They are available in a maximum of 24 content levels (according to the technical regulations of the AdV) in three forms (individual levels, gray combination and color combination). The data are comprehensive and available in the uniform geodetic reference system and map projection for the state of Brandenburg. The raster data is divided into different levels according to cartographic content elements. They are delivered without page cuts as single-color individual levels (layers) and as colored combined editions in a uniform resolution. In addition, the data is offered in the standard sheet format (with map frame and legend) as a PDF and as a plotted map. They are available as web services, as raster data and as analogue map prints (plots). When using the data, the license conditions must be observed.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This resource is the raw data from a topographic survey of the Sourhope field experiment site, conducted by the Department of Environmental Science, University of Stirling in April and May 2000. The data are available to match to other data sets from the field site, or to analyse in more detail. The data were collected as part of the NERC Soil Biodiversity Thematic Programme, centred upon the intensive study of a large field experiment located at the Macaulay Land Use Research Institute (now the James Hutton Institute)'s farm at Sourhope in the Scottish Borders (Grid reference: NT8545019630). During this time, the site was monitored to assess changes in above ground biomass production (productivity), species composition and relative abundance (diversity). Full details about this dataset can be found at https://doi.org/10.5285/d5b78255-b834-485e-8aa4-590ddf604bfd
The GEBCO_2020 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2020 Grid represents all data within the 2020 compilation. The compilation of the GEBCO_2020 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets supplied by the Regional Centers, as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2020 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
The LIDAR Composite DTM/DSM is a raster terrain model covering ~99% of England at 1m spatial resolution, produced by the UK Environment Agency in 2022. The model contains 3 bands of terrain data: a Digital Terrain Model (DTM), a first return Digital Surface Model (DSM), and a last return DSM. …
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This is a high resolution spatial dataset of Digital Terrain Model (DTM) data in South West England. The DTM along with a Digital Surface Model (DSM) cover an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DTM represents the topographic model (height) of the bare earth. The dataset is a part of outcomes from the Centre for Ecology & Hydrology South West (SW) Project. There is also a Digital Surface Model (DSM) dataset covering the same areas available from the SW project. Full details about this dataset can be found at https://doi.org/10.5285/e2a742df-3772-481a-97d6-0de5133f4812
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Coastal Topographic Surveys are height transects that form part of the Anglian Coastal Monitoring Programme. A surveyor using a GNSS (Global Navigation Satellite System) staff will make observations of elevation and usually substrate type at recorded coordinates. This is usually carried out along a fixed transect line, but can be along a grid or, when the staff is mounted to an ATV (All terrain vehicle), a high volume of ‘spot height’ measurements through the survey area. The outputs of this survey are the easting and northing coordinates of each location where a measurement was taken and the elevation in metres above Ordnance Datum (Newlyn). The transect survey data will also contain a chainage position of where along the transects the measurement was taken and a two letter substrate code.