20 datasets found
  1. PyTorch Geometric External Library

    • kaggle.com
    zip
    Updated Mar 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LYOmega (2024). PyTorch Geometric External Library [Dataset]. https://www.kaggle.com/datasets/lyomega/torch-geometric
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 18, 2024
    Authors
    LYOmega
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is the Python wheel package file for PyTorch Geometric external library (to install PyG just pip install torch_geometric). PyTorch Geometric is the torch implementation used to build the graph neural network. For details, please refer to torch_geometric.👋

    Note: These library are not required to install PyG. I compile the wheel files because it takes a long to install them. If you want to use a specific version, please refer to this notebook.

  2. torch_geometric

    • kaggle.com
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vishal Baraiya (2025). torch_geometric [Dataset]. https://www.kaggle.com/datasets/thevixhal/torch-geometric
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vishal Baraiya
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Vishal Baraiya

    Released under MIT

    Contents

  3. h

    QM9_ADiT

    • huggingface.co
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chaitanya K. Joshi (2025). QM9_ADiT [Dataset]. https://huggingface.co/datasets/chaitjo/QM9_ADiT
    Explore at:
    Dataset updated
    May 23, 2025
    Authors
    Chaitanya K. Joshi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    All-atom Diffusion Transformers - QM9 dataset

    QM9 dataset from the paper "All-atom Diffusion Transformers: Unified generative modelling of molecules and materials", by Chaitanya K. Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop Sriram*, and Zachary W. Ulissi* from FAIR Chemistry at Meta (* Joint last author). Original data source: https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html (Adapted from MoleculeNet)… See the full description on the dataset page: https://huggingface.co/datasets/chaitjo/QM9_ADiT.

  4. d

    PyTorch geometric datasets for morphVQ models

    • datadryad.org
    • dataone.org
    • +2more
    zip
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch geometric datasets for morphVQ models [Dataset]. https://datadryad.org/stash/dataset/doi:10.5061/dryad.bvq83bkcr
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Dryad
    Authors
    Oshane Thomas; Hongyu Shen; Ryan L. Rauum; William E. H. Harcourt-Smith; John D. Polk; Mark Hasegawa-Johnson
    Time period covered
    2022
    Description

    These datasets are customized Torch Geometric Datasets that contain raw .off polygon meshes as well as preprocessed .pt files needed for training morphVQ models. morphVQ can be found at https://github.com/oothomas/morphVQ.

  5. umnist_custom

    • kaggle.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sajan Gohil (2022). umnist_custom [Dataset]. https://www.kaggle.com/datasets/srg9000/umnist-custom
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sajan Gohil
    Description

    Original dataset to dataset containing image slices, related features, edge mappings, edge features etc which can be used to convert to a torch_geometric dataset easily

  6. h

    CSL

    • huggingface.co
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Graph Datasets (2023). CSL [Dataset]. https://huggingface.co/datasets/graphs-datasets/CSL
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2023
    Dataset authored and provided by
    Graph Datasets
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for CSK

      Dataset Summary
    

    The CSL dataset is a synthetic dataset, to test GNN expressivity.

      Supported Tasks and Leaderboards
    

    CSL should be used for binary graph classification, on isomoprhism or not.

      External Use
    
    
    
    
    
      PyGeometric
    

    To load in PyGeometric, do the following: from datasets import load_dataset

    from torch_geometric.data import Data from torch_geometric.loader import DataLoader

    dataset_hf =… See the full description on the dataset page: https://huggingface.co/datasets/graphs-datasets/CSL.

  7. pyg-packages-torch1.12.1+cu113

    • kaggle.com
    Updated Mar 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lzsy0226 (2023). pyg-packages-torch1.12.1+cu113 [Dataset]. https://www.kaggle.com/datasets/lzsy0226/pyg-packages-torch1121-cu113
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 18, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    lzsy0226
    Description

    PyG库文件,导入后可以直接安装 !pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv torch_geometric --no-index --find-links=file:///kaggle/input/pyg-packages-torch1121-cu113/pyg-packages

  8. h

    tags-ask-ubuntu

    • huggingface.co
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). tags-ask-ubuntu [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/tags-ask-ubuntu
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Source Paper: https://arxiv.org/abs/1802.06916

      Usage
    

    from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

    dataset = CornellTemporalHyperGraphDataset(root = "./", name="tags-ask-ubuntu", split="train")

      Citation
    

    @article{Benson-2018-simplicial, author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon}, title = {Simplicial closure and higher-order link prediction}, year = {2018}, doi =… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/tags-ask-ubuntu.

  9. R

    SEAT2D-GNN: A Seat-Inspired Elastodynamics Database with Geometric and...

    • entrepot.recherche.data.gouv.fr
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victor Matray; Victor Matray; Faisal Amlani; Faisal Amlani (2025). SEAT2D-GNN: A Seat-Inspired Elastodynamics Database with Geometric and Topological Variations on 2D Meshes, e.g. for Graph Neural Network Applications [Dataset]. http://doi.org/10.57745/3OADUI
    Explore at:
    zip(200230258), zip(13039587253), text/x-python-script(2145), txt(2791)Available download formats
    Dataset updated
    Jan 28, 2025
    Dataset provided by
    Recherche Data Gouv
    Authors
    Victor Matray; Victor Matray; Faisal Amlani; Faisal Amlani
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Time period covered
    Sep 1, 2022 - Aug 31, 2025
    Dataset funded by
    Safran Tech
    Description

    Overview This database contains results from linear elastodynamic simulations performed on 2D “seat” geometries. The dataset comprises 1,800 examples generated using random configurations of holes (round or square), with six different parameterizations (1 round hole, 2 round holes, 3 round holes, 1 square hole, 2 square holes, 3 square holes). The geometries are grouped by sets of six in ascending order of their index. All simulations were carried out with linear T3 finite elements and time integration was done using the Newmark scheme. Matlab Files: seat_lin_i.mat Each seat_lin_i.mat file contains the following data: M: Mass matrix K: Stiffness matrix F: Time-dependent loading term ddlu: Boolean indices indicating free degrees of freedom lt: List of 400 time steps Uref: Primal solution field (displacements) over time The equation solved in these simulations is: M d2Uref/dt2 + K Uref = F. Python Reader: transfer_mat2py.py A Python script, transfer_mat2py.py, is provided to facilitate reading the .mat files within a Python environment. This script allows users to import the simulation data (mass matrix, stiffness matrix, loading terms, etc.) directly into their Python workflows. Python Files: seat_i.pt Each seat_i.pt file is stored in the torch_geometric.data “graph” format and contains: Node features: X: Node positions and local contributions of the stiffness matrix N: Node type (Dirichlet, non-zero Neumann, or zero Neumann) F: Loading term at each node Edge features: edge_attr: Stiffness matrix contributions associated with each edge edge_index: Graph connectivity Output fields: s1: First spatial mode of the primal solution s2: Second spatial mode of the primal solution s3: Third spatial mode of the primal solution This dataset can be used to develop and benchmark methods for reduced-order modeling, machine learning approaches in computational mechanics, or any application that requires detailed finite element simulations of linear elastodynamics on heterogeneous 2D geometries.

  10. h

    NDC-classes

    • huggingface.co
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). NDC-classes [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/NDC-classes
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Source Paper: https://arxiv.org/abs/1802.06916

      Usage
    

    from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

    dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-classes", split="train")

      Citation
    

    @article{Benson-2018-simplicial, author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon}, title = {Simplicial closure and higher-order link prediction}, year = {2018}, doi =… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/NDC-classes.

  11. DDI - image and graph

    • kaggle.com
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tùng Lâm Ngô (2025). DDI - image and graph [Dataset]. https://www.kaggle.com/tnglmng/ddi-image-and-graph
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tùng Lâm Ngô
    Description

    This dataset provides preprocessed image-based and graph-based drug representations to facilitate research in multimodal learning for drug discovery and interaction prediction.

    Included Files

    1. id2imageembedding.pt

    • Type: PyTorch serialized dictionary
    • Format: {drug_id: image_embedding}
    • Details:

      • Each value is a 1D tensor representing the [CLS] token embedding from a Vision Transformer (ViT).
      • Precomputed for efficiency — no image preprocessing or ViT inference required.

    2. id2pyg.pt

    • Type: PyTorch serialized dictionary
    • Format: {drug_id: torch_geometric.data.Data}
    • Details:

      • Each value is a PyTorch Geometric graph object containing the drug’s molecular structure (e.g., atoms as nodes, bonds as edges).
      • Designed for use with GNN-based models.
  12. torch_geometric_needed_packages

    • kaggle.com
    Updated Apr 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CurisZhou (2022). torch_geometric_needed_packages [Dataset]. https://www.kaggle.com/datasets/curiszhou/torch-geometric-needed-packages
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    CurisZhou
    Description

    Dataset

    This dataset was created by CurisZhou

    Contents

  13. h

    MNIST

    • huggingface.co
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MNIST [Dataset]. https://huggingface.co/datasets/graphs-datasets/MNIST
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2023
    Dataset authored and provided by
    Graph Datasets
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for MNIST

      Dataset Summary
    

    The MNIST dataset consists of 55000 images in 10 classes, represented as graphs. It comes from a computer vision dataset.

      Supported Tasks and Leaderboards
    

    MNIST should be used for multiclass graph classification.

      External Use
    
    
    
    
    
      PyGeometric
    

    To load in PyGeometric, do the following: from datasets import load_dataset

    from torch_geometric.data import Data from torch_geometric.loader import DataLoader… See the full description on the dataset page: https://huggingface.co/datasets/graphs-datasets/MNIST.

  14. OGBN-Proteins (Processed for PyG)

    • kaggle.com
    zip
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redao da Taupl (2021). OGBN-Proteins (Processed for PyG) [Dataset]. https://www.kaggle.com/dataup1/ogbn-proteins
    Explore at:
    zip(677947148 bytes)Available download formats
    Dataset updated
    Feb 27, 2021
    Authors
    Redao da Taupl
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    OGBN-Proteins

    Webpage: https://ogb.stanford.edu/docs/nodeprop/#ogbn-proteins

    Usage in Python

    import os.path as osp
    import pandas as pd
    import torch
    import torch_geometric.transforms as T
    from ogb.nodeproppred import PygNodePropPredDataset
    
    class PygOgbnProteins(PygNodePropPredDataset):
      def _init_(self, meta_csv = None):
        root, name, transform = '/kaggle/input', 'ogbn-proteins', T.ToSparseTensor()
        if meta_csv is None:
          meta_csv = osp.join(root, name, 'ogbn-master.csv')
        master = pd.read_csv(meta_csv, index_col = 0)
        meta_dict = master[name]
        meta_dict['dir_path'] = osp.join(root, name)
        super()._init_(name = name, root = root, transform = transform, meta_dict = meta_dict)
      def get_idx_split(self, split_type = None):
        if split_type is None:
          split_type = self.meta_info['split']
        path = osp.join(self.root, 'split', split_type)
        if osp.isfile(os.path.join(path, 'split_dict.pt')):
          return torch.load(os.path.join(path, 'split_dict.pt'))
        if self.is_hetero:
          train_idx_dict, valid_idx_dict, test_idx_dict = read_nodesplitidx_split_hetero(path)
          for nodetype in train_idx_dict.keys():
            train_idx_dict[nodetype] = torch.from_numpy(train_idx_dict[nodetype]).to(torch.long)
            valid_idx_dict[nodetype] = torch.from_numpy(valid_idx_dict[nodetype]).to(torch.long)
            test_idx_dict[nodetype] = torch.from_numpy(test_idx_dict[nodetype]).to(torch.long)
            return {'train': train_idx_dict, 'valid': valid_idx_dict, 'test': test_idx_dict}
        else:
          train_idx = dt.fread(osp.join(path, 'train.csv'), header = None).to_numpy().T[0]
          train_idx = torch.from_numpy(train_idx).to(torch.long)
          valid_idx = dt.fread(osp.join(path, 'valid.csv'), header = None).to_numpy().T[0]
          valid_idx = torch.from_numpy(valid_idx).to(torch.long)
          test_idx = dt.fread(osp.join(path, 'test.csv'), header = None).to_numpy().T[0]
          test_idx = torch.from_numpy(test_idx).to(torch.long)
          return {'train': train_idx, 'valid': valid_idx, 'test': test_idx}
    
    dataset = PygOgbnProteins()
    split_idx = dataset.get_idx_split()
    train_idx, valid_idx, test_idx = split_idx['train'], split_idx['valid'], split_idx['test']
    graph = dataset[0] # PyG Graph object
    

    Description

    Graph: The ogbn-proteins dataset is an undirected, weighted, and typed (according to species) graph. Nodes represent proteins, and edges indicate different types of biologically meaningful associations between proteins, e.g., physical interactions, co-expression or homology [1,2]. All edges come with 8-dimensional features, where each dimension represents the strength of a single association type and takes values between 0 and 1 (the larger the value is, the stronger the association is). The proteins come from 8 species.

    Prediction task: The task is to predict the presence of protein functions in a multi-label binary classification setup, where there are 112 kinds of labels to predict in total. The performance is measured by the average of ROC-AUC scores across the 112 tasks.

    Dataset splitting: The authors split the protein nodes into training/validation/test sets according to the species which the proteins come from. This enables the evaluation of the generalization performance of the model across different species.

    Note: For undirected graphs, the loaded graphs will have the doubled number of edges because the bidirectional edges will be added automatically.

    Summary

    Package#Nodes#EdgesSplit TypeTask TypeMetric
    ogb>=1.1.1132,53439,561,252SpeciesMulti-label binary classificationROC-AUC

    Open Graph Benchmark

    Website: https://ogb.stanford.edu

    The Open Graph Benchmark (OGB) [3] is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner.

    References

    [1] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019. [2] Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Research, 47(D1):D330–D338, 2018. [3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural Information Processing Systems, pp. 22118–22133, 2020.

    Disclaimer

    I am NOT the author of this dataset. It was downloaded from its official website. I assume no responsibility or liability for the content in this dataset. Any questions, problems or issues, please contact the original authors at their website or their GitHub repo.

  15. h

    NDC-substances-25

    • huggingface.co
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). NDC-substances-25 [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/NDC-substances-25
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Source Paper: https://arxiv.org/abs/1802.06916

      Usage
    

    from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

    dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-substances-25", split="train")

      Citation
    

    @article{Benson-2018-simplicial, author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon}, title = {Simplicial closure and higher-order link prediction}, year = {2018}, doi =… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/NDC-substances-25.

  16. h

    contact-high-school

    • huggingface.co
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). contact-high-school [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/contact-high-school
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Source Paper: https://arxiv.org/abs/1802.06916

      Usage
    

    from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

    dataset = CornellTemporalHyperGraphDataset(root = "./", name="contact-high-school", split="train")

      Citation
    

    @article{Benson-2018-simplicial, author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon}, title = {Simplicial closure and higher-order link prediction}, year = {2018}, doi =… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/contact-high-school.

  17. h

    email-Eu-25

    • huggingface.co
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). email-Eu-25 [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/email-Eu-25
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Source Paper: https://arxiv.org/abs/1802.06916

      Usage
    

    from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

    dataset = CornellTemporalHyperGraphDataset(root = "./", name="email-Eu-25", split="train")

      Citation
    

    @article{Benson-2018-simplicial, author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon}, title = {Simplicial closure and higher-order link prediction}, year = {2018}, doi =… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/email-Eu-25.

  18. h

    AIDS

    • huggingface.co
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Graph Datasets (2023). AIDS [Dataset]. https://huggingface.co/datasets/graphs-datasets/AIDS
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2023
    Dataset authored and provided by
    Graph Datasets
    Description

    Dataset Card for AIDS

      Dataset Summary
    

    The AIDS dataset is a dataset containing compounds checked for evidence of anti-HIV activity..

      Supported Tasks and Leaderboards
    

    AIDS should be used for molecular classification, a binary classification task. The score used is accuracy with cross validation.

      External Use
    
    
    
    
    
      PyGeometric
    

    To load in PyGeometric, do the following: from datasets import load_dataset

    from torch_geometric.data import Data from… See the full description on the dataset page: https://huggingface.co/datasets/graphs-datasets/AIDS.

  19. h

    CIFAR10

    • huggingface.co
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Graph Datasets (2023). CIFAR10 [Dataset]. https://huggingface.co/datasets/graphs-datasets/CIFAR10
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 13, 2023
    Dataset authored and provided by
    Graph Datasets
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for CIFAR10

      Dataset Summary
    

    The CIFAR10 dataset consists of 45000 images in 10 classes, represented as graphs.

      Supported Tasks and Leaderboards
    

    CIFAR10 should be used for multiclass graph classification.

      External Use
    
    
    
    
    
      PyGeometric
    

    To load in PyGeometric, do the following: from datasets import load_dataset

    from torch_geometric.data import Data from torch_geometric.loader import DataLoader

    dataset_hf =… See the full description on the dataset page: https://huggingface.co/datasets/graphs-datasets/CIFAR10.

  20. h

    ZINC

    • huggingface.co
    Updated Apr 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZINC [Dataset]. https://huggingface.co/datasets/graphs-datasets/ZINC
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2023
    Dataset authored and provided by
    Graph Datasets
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Dataset Card for ZINC

      Dataset Summary
    

    The ZINC dataset is a "curated collection of commercially available chemical compounds prepared especially for virtual screening" (Wikipedia).

      Supported Tasks and Leaderboards
    

    ZINC should be used for molecular property prediction (aiming to predict the constrained solubility of the molecules), a graph regression task. The score used is the MAE. The associated leaderboard is here: Papers with code leaderboard.… See the full description on the dataset page: https://huggingface.co/datasets/graphs-datasets/ZINC.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
LYOmega (2024). PyTorch Geometric External Library [Dataset]. https://www.kaggle.com/datasets/lyomega/torch-geometric
Organization logo

PyTorch Geometric External Library

PyTorch Geometric external library wheels for Kaggle Env

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Mar 18, 2024
Authors
LYOmega
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset is the Python wheel package file for PyTorch Geometric external library (to install PyG just pip install torch_geometric). PyTorch Geometric is the torch implementation used to build the graph neural network. For details, please refer to torch_geometric.👋

Note: These library are not required to install PyG. I compile the wheel files because it takes a long to install them. If you want to use a specific version, please refer to this notebook.

Search
Clear search
Close search
Google apps
Main menu