Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Original source of dataset: http://shuoyang1213.me/WIDERFACE/
The Wider Face dataset compatible for use with Torchvision. If you use this dataset, you don't need to download it via the internet into your Kaggle working directory. The dataset is available at: '/kaggle/input/wider-face-torchvision-compatible/'
To use, say:
import torchvision
wf_dataset = torchvision.datasets.WIDERFace(
root = '/kaggle/input/wider-face-torchvision-compatible/',
split = "train",
download = False,
)
image, targets = wf_dataset[0]
Facebook
TwitterThis dataset was created by TonyChen52
Facebook
TwitterDataset Card for "movie_posters-genres-80k-torchvision-transforms"
More Information needed
Facebook
TwitterUsed for the APTOS 2019 competition.
torchvision.models.resnet101
torchvision.models.resnet152
torchvision.models.densenet121
torchvision.models.densenet169
torchvision.models.densenet161
torchvision.models.densenet201
torchvision.models.inception_v3
torchvision.models.segmentation.fcn_resnet101
Facebook
TwitterCelebA dataset
A copy of celeba dataset. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
How to use
Download data
huggingface-cli download --local-dir /path/to/datasets/celeba --repo-type dataset Yuehao/celeba unzip /path/to/datasets/celeba/img_align_celeba.zip -d /path/to/datasets/celeba
Load data via torchvision.datasets.CelebA
torchvision.datasets.CelebA(root='/path/to/datasets')
Facebook
TwitterSimple pretrained dump of efficientnet weights from the torchvision package.
Obtained by simply running a notebook with the internet switched on and then switching it off.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding and requires careful hyperparameter tuning. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. It consists of a set of patches optimized to generalize across different models and applied to ImageNet data after preprocessing them with affine transformations. This process enables an approximate yet faster robustness evaluation, leveraging the transferability of adversarial perturbations.
We release our dataset as a set of folders indicating the patch target label (e.g., banana), each containing 1000 subfolders as the ImageNet output classes.
An example showing how to use the dataset is shown below.
import os.path
from torchvision import datasets, transforms, models import torch.utils.data
class ImageFolderWithEmptyDirs(datasets.ImageFolder): """ This is required for handling empty folders from the ImageFolder Class. """
def find_classes(self, directory):
classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
if not classes:
raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes) if
len(os.listdir(os.path.join(directory, cls_name))) > 0}
return classes, class_to_idx
dataset_folder = 'data/ImageNet-Patch'
available_labels = { 487: 'cellular telephone', 513: 'cornet', 546: 'electric guitar', 585: 'hair spray', 804: 'soap dispenser', 806: 'sock', 878: 'typewriter keyboard', 923: 'plate', 954: 'banana', 968: 'cup' }
target_label = 954
dataset_folder = os.path.join(dataset_folder, str(target_label)) normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transforms = transforms.Compose([ transforms.ToTensor(), normalizer ])
dataset = ImageFolderWithEmptyDirs(dataset_folder, transform=transforms) model = models.resnet50(pretrained=True) loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=5) model.eval()
batches = 10 correct, attack_success, total = 0, 0, 0 for batch_idx, (images, labels) in enumerate(loader): if batch_idx == batches: break pred = model(images).argmax(dim=1) correct += (pred == labels).sum() attack_success += sum(pred == target_label) total += pred.shape[0]
accuracy = correct / total attack_sr = attack_success / total
print("Robust Accuracy: ", accuracy) print("Attack Success: ", attack_sr)
Facebook
TwitterThis dataset was created by jionie
Facebook
TwitterGH200 ARM64 vLLM wheel
We build wheels for GH200 ARM64 from Lambda AI for specific PyTorch version,
torch==2.7.1+cu128 torchaudio==2.7.1 torchvision==0.22.1
Full requirements in requirements.txt, but PyTorch 2.7.1 Cuda 12.8 should be enough, pip3 install torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 pytorch-triton==3.3.0 --index-url https://download.pytorch.org/whl/cu128
Build by yourself
Step to reproduce at build.sh.
Facebook
TwitterThis dataset was created by rkstgr
Facebook
TwitterDataset Card for "SemEval_traindata_emotions"
Как был получен from datasets import load_dataset import datasets from torchvision.io import read_video import json import torch import os from torch.utils.data import Dataset, DataLoader import tqdm
dataset_path = "./SemEval-2024_Task3/training_data/Subtask_2_train.json"
dataset = json.loads(open(dataset_path).read()) print(len(dataset))
all_conversations = []
for item in dataset: all_conversations.extend(item["conversation"])… See the full description on the dataset page: https://huggingface.co/datasets/dim/SemEval_training_data_emotions.
Facebook
TwitterExample usage. You will have to use a shape batching dataset when training in batches from datasets import load_dataset from diffusers import AutoencoderDC import torch import torchvision.transforms as transforms from PIL import Image
ds = load_dataset("SwayStar123/imagenet1k_dcae-f64-latents_train")
with torch.inference_mode(): device = "cuda" ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers", cache_dir="ae", torch_dtype=torch.bfloat16).to(device).eval()… See the full description on the dataset page: https://huggingface.co/datasets/SwayStar123/imagenet1k_dcae-f64-latents.
Facebook
TwitterThis dataset was created by morg
Facebook
TwitterThis dataset was created by denred0
Facebook
TwitterFFHQ Dataset (pravsels/FFHQ_1024) encoded using the dc-ae-f128c512-mix-1.0 auto encoder. Example usage import sys sys.path.append('../dcae') # https://github.com/vladmandic/dcae from dcae import DCAE
from datasets import load_dataset import torch import torchvision
dataset = load_dataset("SwayStar123/FFHQ_1024_DC-AE_f128", split="train") dc_ae = DCAE("dc-ae-f128c512-mix-1.0", device="cuda", dtype=torch.bfloat16).eval() # Must be bfloat. with float16 it produces terrible outputs.
def… See the full description on the dataset page: https://huggingface.co/datasets/SwayStar123/FFHQ_1024_DC-AE_f128.
Facebook
Twitterhttps://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/
ViTTiny1022
The dataset for Scaling Up Parameter Generation: A Recurrent Diffusion Approach.
Requirement
Install torch and other dependencies
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia pip install timm einops seaborn openpyxl
Usage
Test one checkpoint
cd ViTTiny1022 python test.py ./chechpoint_test/0000_acc0.9613_class0314_condition_cifar10_vittiny.pth
Facebook
Twitter
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset Card for Video Summarization For Retail Dataset
This dataset contains short videos of shoppers in a retail setting along with the corresponding textual descriptions of each video.
Dataset Details
Curated by: Parker Lischwe Language(s) (NLP): English License: cc-by-sa-4.0
Uses
Navigate to Downloads directory where the zip file and python script have been downloaded to and run following commands in terminal: pip install torch torchvision… See the full description on the dataset page: https://huggingface.co/datasets/Intel/Video_Summarization_For_Retail.
Facebook
TwitterThis dataset was created by kuokuo
Facebook
TwitterPre-trained inception v3 model on ImageNet data provided by torchvision.
Data provided by torchvision under BSD licence. For details visit their website.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Original source of dataset: http://shuoyang1213.me/WIDERFACE/
The Wider Face dataset compatible for use with Torchvision. If you use this dataset, you don't need to download it via the internet into your Kaggle working directory. The dataset is available at: '/kaggle/input/wider-face-torchvision-compatible/'
To use, say:
import torchvision
wf_dataset = torchvision.datasets.WIDERFace(
root = '/kaggle/input/wider-face-torchvision-compatible/',
split = "train",
download = False,
)
image, targets = wf_dataset[0]