55 datasets found
  1. Wider Face - Torchvision Compatible

    • kaggle.com
    zip
    Updated Apr 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dhruv (2023). Wider Face - Torchvision Compatible [Dataset]. https://www.kaggle.com/datasets/dhruv4930/wider-face-torchvision-compatible
    Explore at:
    zip(3678683501 bytes)Available download formats
    Dataset updated
    Apr 5, 2023
    Authors
    Dhruv
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Original source of dataset: http://shuoyang1213.me/WIDERFACE/

    The Wider Face dataset compatible for use with Torchvision. If you use this dataset, you don't need to download it via the internet into your Kaggle working directory. The dataset is available at: '/kaggle/input/wider-face-torchvision-compatible/'

    To use, say:

    import torchvision
    
    wf_dataset = torchvision.datasets.WIDERFace(
      root = '/kaggle/input/wider-face-torchvision-compatible/',
      split = "train",
      download = False,
    )
    
    image, targets = wf_dataset[0]
    
  2. torchvision

    • kaggle.com
    zip
    Updated Dec 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TonyChen52 (2021). torchvision [Dataset]. https://www.kaggle.com/datasets/tonychen52/torchvision
    Explore at:
    zip(17181761 bytes)Available download formats
    Dataset updated
    Dec 13, 2021
    Authors
    TonyChen52
    Description

    Dataset

    This dataset was created by TonyChen52

    Contents

  3. h

    movie_posters-genres-80k-torchvision-transforms

    • huggingface.co
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Olsén (2023). movie_posters-genres-80k-torchvision-transforms [Dataset]. https://huggingface.co/datasets/skvarre/movie_posters-genres-80k-torchvision-transforms
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 6, 2023
    Authors
    Tim Olsén
    Description

    Dataset Card for "movie_posters-genres-80k-torchvision-transforms"

    More Information needed

  4. torchvision.models.partial1

    • kaggle.com
    zip
    Updated Jul 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jxtrbtk (2019). torchvision.models.partial1 [Dataset]. https://www.kaggle.com/jtbontinck/torchvisionmodelspartial1
    Explore at:
    zip(966438181 bytes)Available download formats
    Dataset updated
    Jul 10, 2019
    Authors
    jxtrbtk
    Description

    Context

    Used for the APTOS 2019 competition.

    Content

    torchvision.models.resnet101

    torchvision.models.resnet152

    torchvision.models.densenet121

    torchvision.models.densenet169

    torchvision.models.densenet161

    torchvision.models.densenet201

    torchvision.models.inception_v3

    torchvision.models.segmentation.fcn_resnet101

    Acknowledgements

    https://pytorch.org/docs/stable/torchvision/models.html

  5. h

    celeba

    • huggingface.co
    • datasetninja.com
    • +3more
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuehao Wang (2025). celeba [Dataset]. https://huggingface.co/datasets/Yuehao/celeba
    Explore at:
    Dataset updated
    May 13, 2025
    Authors
    Yuehao Wang
    Description

    CelebA dataset

    A copy of celeba dataset. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

      How to use
    

    Download data

    huggingface-cli download --local-dir /path/to/datasets/celeba --repo-type dataset Yuehao/celeba unzip /path/to/datasets/celeba/img_align_celeba.zip -d /path/to/datasets/celeba

    Load data via torchvision.datasets.CelebA

    torchvision.datasets.CelebA(root='/path/to/datasets')

  6. Torchvision Efficientnets

    • kaggle.com
    zip
    Updated Jul 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Torchvision Efficientnets [Dataset]. https://www.kaggle.com/thedevastator/torchvision-efficientnets
    Explore at:
    zip(2022438208 bytes)Available download formats
    Dataset updated
    Jul 14, 2022
    Authors
    The Devastator
    Description

    Simple pretrained dump of efficientnet weights from the torchvision package.

    Obtained by simply running a notebook with the internet switched on and then switching it off.

  7. Z

    Data from: ImageNet-Patch: A Dataset for Benchmarking Machine Learning...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maura Pintor; Daniele Angioni; Angelo Sotgiu; Luca Demetrio; Ambra Demontis; Battista Biggio; Fabio Roli (2022). ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6568777
    Explore at:
    Dataset updated
    Jun 30, 2022
    Dataset provided by
    University of Cagliari, Italy
    University of Genoa, Italy
    Authors
    Maura Pintor; Daniele Angioni; Angelo Sotgiu; Luca Demetrio; Ambra Demontis; Battista Biggio; Fabio Roli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding and requires careful hyperparameter tuning. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. It consists of a set of patches optimized to generalize across different models and applied to ImageNet data after preprocessing them with affine transformations. This process enables an approximate yet faster robustness evaluation, leveraging the transferability of adversarial perturbations.

    We release our dataset as a set of folders indicating the patch target label (e.g., banana), each containing 1000 subfolders as the ImageNet output classes.

    An example showing how to use the dataset is shown below.

    code for testing robustness of a model

    import os.path

    from torchvision import datasets, transforms, models import torch.utils.data

    class ImageFolderWithEmptyDirs(datasets.ImageFolder): """ This is required for handling empty folders from the ImageFolder Class. """

    def find_classes(self, directory):
      classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
      if not classes:
        raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")
      class_to_idx = {cls_name: i for i, cls_name in enumerate(classes) if
              len(os.listdir(os.path.join(directory, cls_name))) > 0}
      return classes, class_to_idx
    

    extract and unzip the dataset, then write top folder here

    dataset_folder = 'data/ImageNet-Patch'

    available_labels = { 487: 'cellular telephone', 513: 'cornet', 546: 'electric guitar', 585: 'hair spray', 804: 'soap dispenser', 806: 'sock', 878: 'typewriter keyboard', 923: 'plate', 954: 'banana', 968: 'cup' }

    select folder with specific target

    target_label = 954

    dataset_folder = os.path.join(dataset_folder, str(target_label)) normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transforms = transforms.Compose([ transforms.ToTensor(), normalizer ])

    dataset = ImageFolderWithEmptyDirs(dataset_folder, transform=transforms) model = models.resnet50(pretrained=True) loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=5) model.eval()

    batches = 10 correct, attack_success, total = 0, 0, 0 for batch_idx, (images, labels) in enumerate(loader): if batch_idx == batches: break pred = model(images).argmax(dim=1) correct += (pred == labels).sum() attack_success += sum(pred == target_label) total += pred.shape[0]

    accuracy = correct / total attack_sr = attack_success / total

    print("Robust Accuracy: ", accuracy) print("Attack Success: ", attack_sr)

  8. torchvision-reference-segmentation

    • kaggle.com
    zip
    Updated Jun 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jionie (2019). torchvision-reference-segmentation [Dataset]. https://kaggle.com/jionie/torchvisionreferencesegmentation
    Explore at:
    zip(7733 bytes)Available download formats
    Dataset updated
    Jun 30, 2019
    Authors
    jionie
    Description

    Dataset

    This dataset was created by jionie

    Contents

  9. h

    GH200-ARM64-vLLM-wheel

    • huggingface.co
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malaysia AI (2025). GH200-ARM64-vLLM-wheel [Dataset]. https://huggingface.co/datasets/malaysia-ai/GH200-ARM64-vLLM-wheel
    Explore at:
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    Malaysia AI
    Description

    GH200 ARM64 vLLM wheel

    We build wheels for GH200 ARM64 from Lambda AI for specific PyTorch version,

    torch==2.7.1+cu128 torchaudio==2.7.1 torchvision==0.22.1

    Full requirements in requirements.txt, but PyTorch 2.7.1 Cuda 12.8 should be enough, pip3 install torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 pytorch-triton==3.3.0 --index-url https://download.pytorch.org/whl/cu128

      Build by yourself
    

    Step to reproduce at build.sh.

  10. torchvision 0.11.1 cp37

    • kaggle.com
    zip
    Updated Jan 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rkstgr (2022). torchvision 0.11.1 cp37 [Dataset]. https://www.kaggle.com/rkstgr/torchvision-0111-cp37
    Explore at:
    zip(23061361 bytes)Available download formats
    Dataset updated
    Jan 8, 2022
    Authors
    rkstgr
    Description

    Dataset

    This dataset was created by rkstgr

    Contents

  11. h

    SemEval_training_data_emotions

    • huggingface.co
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    web (2024). SemEval_training_data_emotions [Dataset]. https://huggingface.co/datasets/dim/SemEval_training_data_emotions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 7, 2024
    Authors
    web
    Description

    Dataset Card for "SemEval_traindata_emotions"

    Как был получен from datasets import load_dataset import datasets from torchvision.io import read_video import json import torch import os from torch.utils.data import Dataset, DataLoader import tqdm

    dataset_path = "./SemEval-2024_Task3/training_data/Subtask_2_train.json"

    dataset = json.loads(open(dataset_path).read()) print(len(dataset))

    all_conversations = []

    for item in dataset: all_conversations.extend(item["conversation"])… See the full description on the dataset page: https://huggingface.co/datasets/dim/SemEval_training_data_emotions.

  12. h

    imagenet1k_dcae-f64-latents

    • huggingface.co
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sway (2025). imagenet1k_dcae-f64-latents [Dataset]. https://huggingface.co/datasets/SwayStar123/imagenet1k_dcae-f64-latents
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 9, 2025
    Authors
    Sway
    Description

    Example usage. You will have to use a shape batching dataset when training in batches from datasets import load_dataset from diffusers import AutoencoderDC import torch import torchvision.transforms as transforms from PIL import Image

    ds = load_dataset("SwayStar123/imagenet1k_dcae-f64-latents_train")

    with torch.inference_mode(): device = "cuda" ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers", cache_dir="ae", torch_dtype=torch.bfloat16).to(device).eval()… See the full description on the dataset page: https://huggingface.co/datasets/SwayStar123/imagenet1k_dcae-f64-latents.

  13. torchvision-0.4.2

    • kaggle.com
    zip
    Updated Feb 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    morg (2020). torchvision-0.4.2 [Dataset]. https://www.kaggle.com/morganmcg/torchvision042
    Explore at:
    zip(10040129 bytes)Available download formats
    Dataset updated
    Feb 4, 2020
    Authors
    morg
    Description

    Dataset

    This dataset was created by morg

    Contents

  14. torchvision-0.9.0

    • kaggle.com
    zip
    Updated Jul 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    denred0 (2021). torchvision-0.9.0 [Dataset]. https://www.kaggle.com/denispotapov/torchvision090
    Explore at:
    zip(92398854 bytes)Available download formats
    Dataset updated
    Jul 29, 2021
    Authors
    denred0
    Description

    Dataset

    This dataset was created by denred0

    Contents

  15. h

    FFHQ_1024_DC-AE_f128

    • huggingface.co
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sway (2024). FFHQ_1024_DC-AE_f128 [Dataset]. https://huggingface.co/datasets/SwayStar123/FFHQ_1024_DC-AE_f128
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 15, 2024
    Authors
    Sway
    Description

    FFHQ Dataset (pravsels/FFHQ_1024) encoded using the dc-ae-f128c512-mix-1.0 auto encoder. Example usage import sys sys.path.append('../dcae') # https://github.com/vladmandic/dcae from dcae import DCAE

    from datasets import load_dataset import torch import torchvision

    dataset = load_dataset("SwayStar123/FFHQ_1024_DC-AE_f128", split="train") dc_ae = DCAE("dc-ae-f128c512-mix-1.0", device="cuda", dtype=torch.bfloat16).eval() # Must be bfloat. with float16 it produces terrible outputs.

    def… See the full description on the dataset page: https://huggingface.co/datasets/SwayStar123/FFHQ_1024_DC-AE_f128.

  16. h

    ViTTiny1022

    • huggingface.co
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DovenTang (2025). ViTTiny1022 [Dataset]. https://huggingface.co/datasets/MTDoven/ViTTiny1022
    Explore at:
    Dataset updated
    Sep 24, 2025
    Authors
    DovenTang
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    ViTTiny1022

    The dataset for Scaling Up Parameter Generation: A Recurrent Diffusion Approach.

      Requirement
    
    
    
    
    
      Install torch and other dependencies
    

    conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia pip install timm einops seaborn openpyxl

      Usage
    
    
    
    
    
      Test one checkpoint
    

    cd ViTTiny1022 python test.py ./chechpoint_test/0000_acc0.9613_class0314_condition_cifar10_vittiny.pth

    python test.py… See the full description on the dataset page: https://huggingface.co/datasets/MTDoven/ViTTiny1022.

  17. Torchvision Finetuning Instance Segmentation

    • kaggle.com
    zip
    Updated Aug 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuki Imajuku (2021). Torchvision Finetuning Instance Segmentation [Dataset]. https://www.kaggle.com/yukiimajuku/torchvision-finetuning-instance-segmentation
    Explore at:
    zip(10982 bytes)Available download formats
    Dataset updated
    Aug 28, 2021
    Authors
    Yuki Imajuku
    Description

    About

    Helper codes used in TORCHVISION OBJECT DETECTION FINETUNING TUTORIAL

    original -> GitHub Page

  18. Video_Summarization_For_Retail

    • huggingface.co
    Updated Jan 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intel (2025). Video_Summarization_For_Retail [Dataset]. https://huggingface.co/datasets/Intel/Video_Summarization_For_Retail
    Explore at:
    Dataset updated
    Jan 11, 2025
    Dataset authored and provided by
    Intelhttp://intel.com/
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Card for Video Summarization For Retail Dataset

    This dataset contains short videos of shoppers in a retail setting along with the corresponding textual descriptions of each video.

      Dataset Details
    

    Curated by: Parker Lischwe Language(s) (NLP): English License: cc-by-sa-4.0

      Uses
    

    Navigate to Downloads directory where the zip file and python script have been downloaded to and run following commands in terminal: pip install torch torchvision… See the full description on the dataset page: https://huggingface.co/datasets/Intel/Video_Summarization_For_Retail.

  19. TorchVision Faster R-CNN Finetuning - Output

    • kaggle.com
    zip
    Updated Mar 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kuokuo (2021). TorchVision Faster R-CNN Finetuning - Output [Dataset]. https://www.kaggle.com/datasets/gocoding/torchvision-faster-rcnn-finetuning-output
    Explore at:
    zip(153984365 bytes)Available download formats
    Dataset updated
    Mar 2, 2021
    Authors
    kuokuo
    Description

    Dataset

    This dataset was created by kuokuo

    Contents

  20. torchvision inception v3 imagenet pretrained

    • kaggle.com
    zip
    Updated Jul 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phil (2019). torchvision inception v3 imagenet pretrained [Dataset]. https://www.kaggle.com/generalerror/torchvision-inception-v3-imagenet-pretrained
    Explore at:
    zip(100980474 bytes)Available download formats
    Dataset updated
    Jul 12, 2019
    Authors
    Phil
    Description

    Content

    Pre-trained inception v3 model on ImageNet data provided by torchvision.

    Acknowledgements

    Data provided by torchvision under BSD licence. For details visit their website.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dhruv (2023). Wider Face - Torchvision Compatible [Dataset]. https://www.kaggle.com/datasets/dhruv4930/wider-face-torchvision-compatible
Organization logo

Wider Face - Torchvision Compatible

The Wider Face dataset for use with Torchvision w/o downloading in Kaggle

Explore at:
zip(3678683501 bytes)Available download formats
Dataset updated
Apr 5, 2023
Authors
Dhruv
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Original source of dataset: http://shuoyang1213.me/WIDERFACE/

The Wider Face dataset compatible for use with Torchvision. If you use this dataset, you don't need to download it via the internet into your Kaggle working directory. The dataset is available at: '/kaggle/input/wider-face-torchvision-compatible/'

To use, say:

import torchvision

wf_dataset = torchvision.datasets.WIDERFace(
  root = '/kaggle/input/wider-face-torchvision-compatible/',
  split = "train",
  download = False,
)

image, targets = wf_dataset[0]
Search
Clear search
Close search
Google apps
Main menu