Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
This dataset represents data that was compiled from the United States severe report database (tornadoes 1950-2015).
This map layer shows tornado tracks in CONUS, Alaska, Hawaii and Puerto Rico, from 1950 to 2015. Statistical data were obtained from the National Weather Service, Storm Prediction Center (SPC).
This is a database of tornadoes that have affected the Huntsville Forecast area this year. National Weather Service Storm Survey information regarding the tornadoes that occurred so far in 2025 within the NWS Huntsville County Warning Area (CWA). Included are storm survey damage points with pictures where available, tornado damage paths, and estimated damage swath information where applicable.
Homeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on Historical Tornado Tracks.
Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2022. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2022Data source: Storm Prediction CenterData modifications: Added fields Calculated Month and DateFor more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Currently filtered for Storm Date is after 12/1/2023Purpose: This is a feature layer of tornado swaths for the NWS Damage Assessment Toolkit.The National Weather Service (NWS) Damage Assessment Toolkit (DAT) has been utilized experimentally since 2009 to assess damage following tornadoes and convective wind events. The DAT is a GIS-based framework for collecting, storing, and analyzing damage survey data, utilizing the Enhanced Fujita (EF) scale for the classification of damage. Data collected from individual locations via mobile device are transmitted to a central geospatial database where they are quality controlled and analyzed to assign the official EF rating. In addition to the individual point, the data are analyzed to generate track centerlines and damage swaths. High resolution satellite imagery and radar data, through partnership with the NASA Short-term Prediction Research and Transition Center, are also available to aid in the analysis. The subsequent dataset is then made available through a web-based graphical interface and GIS services.Here is the full REST service: https://services.dat.noaa.gov/arcgis/rest/services/nws_damageassessmenttoolkitGeoplatform website: https://communities.geoplatform.gov/disasters/noaa-damage-assessment-toolkit-dat/More InformationWelcome to the National Weather Service Damage Assessment Toolkit. Data on this interface is collected during NWS Post-Event Damage Assessments. While the data has been quality controlled, it is still considered preliminary. Official statistics for severe weather events can be found in the Storm Data publication, available from the National Centers for Environmental Information (NCEI) at: https://www.ncdc.noaa.gov/IPS/sd/sd.html Questions regarding this data can be addressed to: parks.camp@noaa.gov.
Map displaying total tornadoes by county across the state of Tennessee from 1950 to present. This file may not always reflect the current count across the state but will be updated periodically to ensure it remains as updated as possible.For more information, please reach out to sam.shamburger@noaa.gov or sr-ohx.webmaster@noaa.gov.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset represents tornado tracks in the United States, Puerto Rico, and the U.S. Virgin Islands, from 1950 to 2013. Statistical data were obtained from the National Weather Service, Storm Prediction Center (SPC).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
A database of verified tornado tracks across Canada has been created covering the 30-year period from 1980 to 2009. The tornado data have undergone a number of quality control checks and represent the most current knowledge of past tornado events over the period. However, updates may be made to the database as new or more accurate information becomes available. The data have been converted to a geo-referenced mapping file that can be viewed and manipulated using GIS software.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Spatial model of Vermont tornado climatology. Models Vermont tornado events per long-term data collection (data date-range is January 1950 - February 2019). Provides access to Vermont tornado-event information.Data-source credit: NCEI (National Centers for Environmental Information) (https://www.ncei.noaa.gov/).Downloaded tornado-event data--in CSV format--from NCEI database on 06/06/2019. Data period is 01/1950-02/2019. Imported data to a geodatabase. Used beginning latitude/longitude values to spatially enable the data; 1 record was missing a beginning latitude/longitude (record w/ EVENT_ID = 10355004)--estimated beginning latitude/longitude of that event by referencing its EVENT_NARRATIVE. Removed fields so that fields focus on core event-info. Projected data to Vermont State Plane NAD83 meters. Moved narrative fields (EVENT_NARRATIVE and EPISODE_NARRATIVE) fields to a separate non-spatial table; those fields have lengthy contents that exceed the shapefile text-field limit--intention is to make them available in open-data portal as CSV table that is joinable to the feature class (via EVENT_ID field).Feature-Class Climate_VTTORNADOS_point FIELD DESCRIPTIONS:EVENT_ID: Unique ID assigned by NWS to note a single, small part that goes into a specific storm episode.BEGIN_DATE: Beginning date.TOR_F_SCALE: Enhanced Fujita Scale describes the strength of the tornado based on the amount and type of damage caused by the tornado. The F-scale of damage will vary in the destruction area; therefore, the highest value of the F-scale is recorded for each event.DEATHS_DIRECT: The number of deaths directly related to the weather event.INJURIES_DIRECT: The number of injuries directly related to the weather event.DAMAGE_PROPERTY_NUM: The estimated amount of damage to property incurred by the weather event. (e.g. 10.00K = $10,000; 10.00M = $10,000,000)DAMAGE_CROPS_NUM: The estimated amount of damage to crops incurred by the weather event. (e.g. 10.00K = $10,000; 10.00M = $10,000,000)TOR_LENGTH: Length of the tornado or tornado segment while on the ground (minimal of tenths of miles)TOR_WIDTH: Width of the tornado or tornado segment while on the ground (in feet)ENDING_LAT: Ending latitude (not available in all records).ENDING_LON: Ending longitude (not available in all records).Table Table_VTTORNADOS_Narratives FIELD DESCRIPTIONS:EVENT_ID: Unique ID assigned by NWS to note a single, small part that goes into a specific storm episode. Can join to EVENT_ID field of Climate_VTTORNADOS_point.EVENT_NARRATIVE: The event narrative provides more specific details of the individual event. The event narrative is provided by NWS.EPISODE_NARRATIVE: The episode narrative depicting the general nature and overall activity of the episode. The narrative is created by NWS. Ex: A strong upper level system over the southern Rockies lifted northeast across the plains causing an intense surface low pressure system and attendant warm front to lift into Nebraska.VCGI and the State of VT make no representations of any kind, including but not limited to the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the data.
Average damage assessment for areas in tornado path.
Tornado paths and starting/touchdown points in Oakland County, Michigan circa 1953-2015. Data provided by NOAA, OCIT, and Matt Malone of Farmington Hills GIS. Originally published as April 2017 Map of the Month
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
A database of verified tornado occurrences across Canada has been created covering the 30-year period from 1980 to 2009. The tornado data have undergone a number of quality control checks and represent the most current knowledge of past tornado events over the period. However, updates may be made to the database as new or more accurate information becomes available. The data have been converted to a geo-referenced mapping file that can be viewed and manipulated using GIS software.
The United States experienced a significant surge in tornado activity in 2024, with 1,910 reported across the country. This marked a substantial increase from previous years, highlighting the unpredictable nature of these violent atmospheric phenomena. Fatalities and economic impact While tornado frequency increased, the death toll from such events remained relatively low compared to historical peaks. In 2023, 86 fatalities were reported due to tornadoes, a notable increase from the 23 deaths in 2022 but far below the 553 lives lost in 2011. Moreover, the economic impact of these storms was substantial, with tornado damage in 2023 amounting to approximately 1.38 billion U.S. dollars, nearly doubling from the previous year. However, this pales in comparison to the record-setting damage of 9.5 billion U.S. dollars in 2011. Comparison to other extreme weather events While tornadoes pose significant risks, hurricanes have historically caused more extensive damage and loss of life in the United States. Hurricane Katrina in 2005 remains the costliest tropical cyclone in recent decades, with damages totaling 200 billion U.S. dollars when adjusted to 2024 values. The impact of such extreme weather events extends beyond immediate destruction, as evidenced by the 1,518 hurricane-related fatalities recorded in 2005. As climate change continues to influence weather patterns, both tornado and hurricane activity may see further shifts in frequency and intensity in the years to come.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is software and data to support the manuscript "Long term temporal trends in synoptic-scale weather conditions favoring significant tornado occurrence over the central United States," which is under review with PLOS One. The software includes all code that is necessary to follow and evaluate the work. Additional public datasets include tornado data from the Storm Prediction Center (http://www.spc.noaa.gov/wcm/#gis), MERRA-2 reanalysis data (https://doi.org/10.5067/VJAFPLI1CSIV), North American Regional Reanalysis data (https://psl.noaa.gov/data/gridded/data.narr.html), Global Wind Oscillation data (https://psl.noaa.gov/map/clim/gwo.data.txt), and the Nino 3.4 index.(https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt).
Severe thunderstorms that moved through Alabama and Southern Tennessee on April 27, 2011 in the early morning hours are highlighted on this map. For more comprehensive information about the April 27, 2011 Super Outbreak, visit the National Weather Service in Birmingham and Huntsville's webpages that document the event:NWS Birmingham: https://www.weather.gov/bmx/event_04272011NWS Huntsville: https://www.weather.gov/hun/hunsur_2011-04-27
This table contains a summary of the number of tornadoes by year for the United States. The table also provides summary statistics for fatalities, injuries, magnitude, and crop losses by hour. The data should be downloaded and used in a spreadsheet program like Excel, Numbers, or Google Sheets. Data is derived from Tornado data from the National Weather Service.
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.Tornado paths and starting/touchdown points in Oakland County, Michigan circa 1953-2015. Data provided by NOAA, OCIT, and Matt Malone of Farmington Hills GIS. Originally published with the April 2017 Map of the Month: Tornadoes in Oakland County.
This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Weather Service (NWS) Storm Prediction Center (SPC) routinely collects reports of severe weather and compiles them with public access from the database called SeverePlot (Hart and Janish 1999) with a Graphic Information System (GIS). The composite SVRGIS information is made available to the public primarily in .zip files of approximately 50MB size. The files located at the access point contain track information regarding known tornados during the period 1950 to 2006. Although available to all, the data provided may be of particular value to weather professionals and students of meteorological sciences. An instructional manual is provided on how to build and develop a basic severe weather report GIS database in ArcGis and is located at the technical documentation site contained in this metadata catalog.
Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."