Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Homeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on Historical Tornado Tracks.
Currently filtered for Storm Date is after 12/1/2023Purpose: This is a feature layer of tornado swaths for the NWS Damage Assessment Toolkit.The National Weather Service (NWS) Damage Assessment Toolkit (DAT) has been utilized experimentally since 2009 to assess damage following tornadoes and convective wind events. The DAT is a GIS-based framework for collecting, storing, and analyzing damage survey data, utilizing the Enhanced Fujita (EF) scale for the classification of damage. Data collected from individual locations via mobile device are transmitted to a central geospatial database where they are quality controlled and analyzed to assign the official EF rating. In addition to the individual point, the data are analyzed to generate track centerlines and damage swaths. High resolution satellite imagery and radar data, through partnership with the NASA Short-term Prediction Research and Transition Center, are also available to aid in the analysis. The subsequent dataset is then made available through a web-based graphical interface and GIS services.Here is the full REST service: https://services.dat.noaa.gov/arcgis/rest/services/nws_damageassessmenttoolkitGeoplatform website: https://communities.geoplatform.gov/disasters/noaa-damage-assessment-toolkit-dat/More InformationWelcome to the National Weather Service Damage Assessment Toolkit. Data on this interface is collected during NWS Post-Event Damage Assessments. While the data has been quality controlled, it is still considered preliminary. Official statistics for severe weather events can be found in the Storm Data publication, available from the National Centers for Environmental Information (NCEI) at: https://www.ncdc.noaa.gov/IPS/sd/sd.html Questions regarding this data can be addressed to: parks.camp@noaa.gov.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset represents tornado tracks in the United States, Puerto Rico, and the U.S. Virgin Islands, from 1950 to 2013. Statistical data were obtained from the National Weather Service, Storm Prediction Center (SPC).
A database of verified tornado tracks across Canada has been created covering the 30-year period from 1980 to 2009. The tornado data have undergone a number of quality control checks and represent the most current knowledge of past tornado events over the period. However, updates may be made to the database as new or more accurate information becomes available. The data have been converted to a geo-referenced mapping file that can be viewed and manipulated using GIS software.
This is a database of tornadoes that have affected the Huntsville Forecast area this year. National Weather Service Storm Survey information regarding the tornadoes that occurred so far in 2025 within the NWS Huntsville County Warning Area (CWA). Included are storm survey damage points with pictures where available, tornado damage paths, and estimated damage swath information where applicable.
This map layer shows tornado tracks in CONUS, Alaska, Hawaii and Puerto Rico, from 1950 to 2015. Statistical data were obtained from the National Weather Service, Storm Prediction Center (SPC).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Weather Service (NWS) Storm Prediction Center (SPC) routinely collects reports of severe weather and compiles them with public access from the database called SeverePlot (Hart and Janish 1999) with a Graphic Information System (GIS). The composite SVRGIS information is made available to the public primarily in .zip files of approximately 50MB size. The files located at the access point contain track information regarding known tornados during the period 1950 to 2006. Although available to all, the data provided may be of particular value to weather professionals and students of meteorological sciences. An instructional manual is provided on how to build and develop a basic severe weather report GIS database in ArcGis and is located at the technical documentation site contained in this metadata catalog.
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.Tornado paths and starting/touchdown points in Oakland County, Michigan circa 1953-2015. Data provided by NOAA, OCIT, and Matt Malone of Farmington Hills GIS. Originally published with the April 2017 Map of the Month: Tornadoes in Oakland County.
The information contained in this shapefile includes tornado tracks for all 62 tornadoes that occurred on April 27, 2011 throughout the State of Alabama. Fields included: Tornado Name, EFScale, Counties Affected, Peak Wind Speed, Path Length, Maximum Width in Miles (MaxWidth), Start Time in Central Daylight Time, Begin Latitude, Begin Longitude, End Time, End Latitude, End Longitude, Maximum Width in Yards (Width_YDS), Segment Order based on Begin Time (Order_No), and Tornado Number from Statewide Track Map (Tor_No).
A map used in the Hazard Risk Assessment Maps app and the Hazard Explorer app to visualize tornado and strong wind hazards.Several layers from the Living Atlas are included in the map by default: the National Risk Index symbolized by Tornado – Hazard Type Risk Index Rating, Tornado Tracks (filtered from 2014 on), and Windstorm Paths in the U.S (filtered from 2014 on). Enable visibility for the most appropriate layers. Use this map to understand tornado and strong wind hazards in your community.If you would like to use additional data to visualize the tornado and strong wind risk assessment, examples would include locations of storm shelters or safe room sites, wind speed maps, building windspeed susceptibility studies, and historical data from the NOAA/NWS Storm Prediction Center Tornado database.
This map layer shows tornado tracks in the United States, Puerto Rico, and the U.S. Virgin Islands, from 1950 to 2008. Statistical data were obtained from the National Weather Service, Storm Prediction Center (SPC). The SPC data originate from the Severe Thunderstorm Database and the National Oceanic and Atmospheric Administration (NOAA) Storm Data publication.
Although tornadoes can occur throughout the year, prime time for twisters in the U.S. is spring and early summer. Larger symbols show more violent tornadoes. Zoom into the map to see approximate tornado tracks.
Average damage assessment for areas in tornado path.
Tornado Warnings are issued to enable the public to get out of harm’s way and mitigate preventable loss. NWS forecasters issue approximately 2,900 Tornado Warnings per year, primarily between the Rockies and Appalachian Mountains. Tornado Warning statistics are based on a comparison of warnings issued and weather spotter observations of tornadoes and/or storm damage surveys from Weather Forecast Offices in the United States. Accuracy or probability of detection (POD) is the percentage of time a tornado actually occurred in an area that was covered by a tornado warning. The difference between the accuracy percentage figure and 100% represents the percentage of events occurring without warning. Most tornadoes cannot be visually tracked from beginning to end and post-storm damage surveying is the official method with which the NWS categorizes tornado characteristics (intensity, path length & width) but must rely on radar data to estimate the timing of the tornado track.
TornadoPaths1950_2015_Join
Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."