Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of univariate regression fit between three age-at-death ratios and three demographic variables based on skeletal samples with three different numbers of adults (D20+).
The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS).
More specifically, the objectives of the TDHS are to:
Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements.
The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey.
MAIN RESULTS
Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education.
The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD.
One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual.
Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids.
By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey.
The population covered by the 1993 DHS is defined as the universe of all ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Sample survey data
The sample for the TDHS was designed to provide estimates of population and health indicators, including fertility and mortality rates for the nation as a whole, fOr urban and rural areas, and for the five major regions of the country. A weighted, multistage, stratified cluster sampling approach was used in the selection of the TDHS sample.
Sample selection was undertaken in three stages. The sampling units at the first stage were settlements that differed in population size. The frame for the selection of the primary sampling units (PSUs) was prepared using the results of the 1990 Population Census. The urban frame included provinces and district centres and settlements with populations of more than 10,000; the rural frame included subdistricts and villages with populations of less than 10,000. Adjustments were made to consider the growth in some areas right up to survey time. In addition to the rural-urban and regional stratifications, settlements were classified in seven groups according to population size.
The second stage of selection involved the list of quarters (administrative divisions of varying size) for each urban settlement, provided by the State Institute of Statistics (SIS). Every selected quarter was subdivided according tothe number of divisions(approximately 100 households)assigned to it. In rural areas, a selected village was taken as a single quarter, and wherever necessary, it was divided into subdivisions of approximately 100 households. In cases where the number of households in a selected village was less than 100 households, the nearest village was selected to complete the 100 households during the listing activity, which is described below.
After the selection of the secondary sampling units (SSUs), a household listing was obtained for each by the TDHS listing teams. The listing activity was carried out in May and June. From the household lists, a systematic random sample of households was chosen for the TDHS. All ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Face-to-face
Two questionnaires were used in the main fieldwork for the TDHS: the Household Questionnaire and the Individual Questionnaire for ever-married women of reproductive age. The questionnaires were based on the model survey instruments developed in the DHS program and on the questionnaires that had been employed in previous Turkish population and health surveys. The questionnaires were adapted to obtain data needed for program planning in Turkey during consultations with population and health agencies. Both questionnaires were developed in English and translated into Turkish.
a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, marital status and relationship to the head of household for each person listed as a household member
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of the total scores of the fertility decision model by socio-demographic variables.
Pre-pandemic (data of 2019) epidemiologic and demographic data have shown that some parameters such as cancer, Alzheimer's disease, advanced age, and alcohol intake levels are positively correlated to Covid-19 mortality, instead, birth and fertility rates are negatively correlated to Covid-19 mortality. A stepwise multiple regression analysis of the above parameters against Covid-19 mortality in 32 countries from Asia, America, Africa, and Europe has generated two main predictors of Covid-19 mortality: alcohol consumption and birth/mortality ratio. A first-order equation correlated alcohol intake to Covid-19 mortality as follows; Covid-19 mortality= 0.1057 x (liters of alcohol intake) + 0.2214 (Coefficient of determination = 0.750, F value = 38.63 , P-value = 7.64x10-7). A second equation correlated (birth rate/mortality rate) to Covid-19 mortality as follows; Covid-19 mortality= - 0.3129 x (birth rate/mortality) ratio +1.638 (coefficient of determination = 0.799, F value = 51.2, P-value = 7.09x10-8). Thus, pre-pandemic alcohol consumption is a high predictor of Covid-19 mortality that should be taken into account as a serious risk factor for future safety measures against SARS-CoV-2 infection.
6.90 (per thousand population) in 2021. Birth Rate (or Crude Birth Rate) refers to the ratio of the number of births to the average population (or mid-period population) during a certain period of time (usually a year), expressed in ‰. Birth rate refers to annual birth rate. The following formula is used: (Number of births)/(Annual average population)*1000‰. Number of births in the formula refers to live births, i.e. when a baby has breathed or showed any vital phenomena regardless of the length of pregnancy. Annual average population is the average of the number of population at the beginning of the year and that at the end of the year. Sometimes it is substituted by the mid-year population.
5,30 (per thousand population) in 2021. Birth Rate (or Crude Birth Rate) refers to the ratio of the number of births to the average population (or mid-period population) during a certain period of time (usually a year), expressed in ‰. Birth rate refers to annual birth rate. The following formula is used: (Number of births)/(Annual average population)*1000‰. Number of births in the formula refers to live births, i.e. when a baby has breathed or showed any vital phenomena regardless of the length of pregnancy. Annual average population is the average of the number of population at the beginning of the year and that at the end of the year. Sometimes it is substituted by the mid-year population.
The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey of 7,070 women age 15-49 and 1,996 men age 15-54. The UDHS was designed to provide information on levels and trends of fertility, family planning knowledge and use, infant and child mortality, and maternal and child health. Fieldwork for the UDHS took place from late-March to mid-August 1995. The survey was similar in scope and design to the 1988-89 UDHS. Survey data show that fertility levels may be declining, contraceptive use is increasing, and childhood mortality is declining; however, data also point to several remaining areas of challenge.
The 1995 UDHS was a follow-up to a similar survey conducted in 1988-89. In addition to including most of the same questions included in the 1988-89 UDHS, the 1995 UDHS added more detailed questions on AIDS and maternal mortality, as well as incorporating a survey of men. The general objectives of the 1995 UDHS are to: - provide national level data which will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; - analyse the direct and indirect factors which determine the level and trends of fertility; - measure the level of contraceptive knowledge and practice (of both women and men) by method, by urban-rural residence, and by region; - collect reliable data on maternal and child health indicators; immunisation, prevalence, and treatment of diarrhoea and other diseases among children under age four; antenatal visits; assistance at delivery; and breastfeeding; - assess the nutritional status of children under age four and their mothers by means of anthropometric measurements (weight and height), and also child feeding practices; and - assess among women and men the prevailing level of specific knowledge and attitudes regarding AIDS and to evaluate patterns of recent behaviour regarding condom use.
MAIN RESULTS
Fertility Trends. UDHS data indicate that fertility in Uganda may be starting to decline. The total fertility rate has declined from the level of 7.1 births per woman that prevailed over the last 2 decades to 6.9 births for the period 1992-94. The crude birth rate for the period 1992-94 was 48 live births per I000 population, slightly lower than the level of 52 observed from the 1991 Population and Housing Census. For the roughly 80 percent of the country that was covered in the 1988-89 UDHS, fertility has declined from 7.3 to 6.8 births per woman, a drop of 7 percent over a six and a half year period.
Birth Intervals. The majority of Ugandan children (72 percent) are born after a "safe" birth interval (24 or more months apart), with 30 percent born at least 36 months after a prior birth. Nevertheless, 28 percent of non-first births occur less than 24 months after the preceding birth, with 10 percent occurring less than 18 months since the previous birth. The overall median birth interval is 29 months. Fertility Preferences. Survey data indicate that there is a strong desire for children and a preference for large families in Ugandan society. Among those with six or more children, 18 percent of married women want to have more children compared to 48 percent of married men. Both men and women desire large families.
Knowledge of Contraceptive Methods. Knowledge of contraceptive methods is nearly universal with 92 percent of all women age 15-49 and 96 percent of all men age 15-54 knowing at least one method of family planning. Increasing Use of Contraception. The contraceptive prevalence rate in Uganda has tripled over a six-year period, rising from about 5 percent in approximately 80 percent of the country surveyed in 1988-89 to 15 percent in 1995.
Source of Contraception. Half of current users (47 percent) obtain their methods from public sources, while 42 percent use non-governmental medical sources, and other private sources account for the remaining 11 percent.
High Childhood Mortality. Although childhood mortality in Uganda is still quite high in absolute terms, there is evidence of a significant decline in recent years. Currently, the direct estimate of the infant mortality rate is 81 deaths per 1,000 births and under five mortality is 147 per 1,000 births, a considerable decline from the rates of 101 and 180, respectively, that were derived for the roughly 80 percent of the country that was covered by the 1988-89 UDHS.
Childhood Vaccination Coverage. One possible reason for the declining mortality is improvement in childhood vaccination coverage. The UDHS results show that 47 percent of children age 12-23 months are fully vaccinated, and only 14 percent have not received any vaccinations.
Childhood Nutritional Status. Overall, 38 percent of Ugandan children under age four are classified as stunted (low height-for-age) and 15 percent as severely stunted. About 5 percent of children under four in Uganda are wasted (low weight-for-height); 1 percent are severely wasted. Comparison with other data sources shows little change in these measures over time.
Virtually all women and men in Uganda are aware of AIDS. About 60 percent of respondents say that limiting the number of sexual partners or having only one partner can prevent the spread of disease. However, knowledge of ways to avoid AIDS is related to respondents' education. Safe patterns of sexual behaviour are less commonly reported by respondents who have little or no education than those with more education. Results show that 65 percent of women and 84 percent of men believe that they have little or no chance of being infected.
Availability of Health Services. Roughly half of women in Uganda live within 5 km of a facility providing antenatal care, delivery care, and immunisation services. However, the data show that children whose mothers receive both antenatal and delivery care are more likely to live within 5 km of a facility providing maternal and child health (MCH) services (70 percent) than either those whose mothers received only one of these services (46 percent) or those whose mothers received neither antenatal nor delivery care (39 percent).
The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.
The population covered by the 1995 UDHS is defined as the universe of all women age 15-49 in Uganda. But because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.
Sample survey data
A sample of 303 primary sampling units (PSU) consisting of enumeration areas (EAs) was selected from a sampling frame of the 1991 Population and Housing Census. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.
Districts in the DISH project area were grouped by proximity into the following five reporting domains: - Kasese and Mbarara Districts - Masaka and Rakai Districts - Luwero and Masindi Districts - Jinja and Kamuli Districts - Kampala District
The sample for the 1995 UDHS was selected in two stages. In the first stage, 303 EAs were selected with probability proportional to size. Then, within each selected EA, a complete household listing and mapping exercise was conducted in December 1994 forming the basis for the second-stage sampling. For the listing exercise, 11 listers from the Statistics Department were trained. Institutional populations (army barracks, hospitals, police camps, etc.) were not listed.
From these household lists, households to be included in the UDHS were selected with probability inversely proportional to size based on the household listing results. All women age 15-49 years in these households were eligible to be interviewed in the UDHS. In one-third of these selected households, all men age 15-54 years were eligible for individual interview as well. The overall target sample was 6,000 women and 2,000 men. Because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.
Since one objective of the survey was to produce estimates of specific demographic and health indicators for the areas included in the DISH project, the sample design allowed for oversampling of households in these districts relative to their actual proportion in the population. Thus, the 1995 UDHS sample is not self-weighting at the national level; weights are required to estimate national-level indicators. Due to the weighting factor and rounding of estimates, figures may not add to totals. In addition, the percent total may not add to 100.0 due to rounding.
Face-to-face
Four questionnaires were used in the 1995 UDHS.
a) A Household Schedule was used to list the names and certain
13,72 (per thousand population) in 2019. Birth Rate (or Crude Birth Rate) refers to the ratio of the number of births to the average population (or mid-period population) during a certain period of time (usually a year), expressed in ‰. Birth rate refers to annual birth rate. The following formula is used: (Number of births)/(Annual average population)*1000‰. Number of births in the formula refers to live births, i.e. when a baby has breathed or showed any vital phenomena regardless of the length of pregnancy. Annual average population is the average of the number of population at the beginning of the year and that at the end of the year. Sometimes it is substituted by the mid-year population.
This dataset contains California’s adolescent birth rate (ABR) by county, age group and race/ethnicity using aggregated years 2014-2016. The ABR is calculated as the number of live births to females aged 15-19 divided by the female population aged 15-19, multiplied by 1,000. Births to females under age 15 are uncommon and thus added to the numerator (total number of births aged 15-19) in calculating the ABR for aged 15-19. The categories by age group are aged 18-19 and aged 15-17; births occurring to females under aged 15 are added to the numerator for aged 15-17 in calculating the ABR for this age group. The race and ethnic groups in this table utilized five mutually exclusive race and ethnicity categories. These categories are Hispanic and the following Non-Hispanic categories of Multi-Race, Black, American Indian (includes Eskimo and Aleut), Asian and Pacific Islander (includes Hawaiian) combined, and White. Note that there are birth records with missing race/ethnicity or categorized as “Other” and not shown in the dataset but included in the ABR calculation overall.
The 1992 Namibia Demographic and Health Survey (NDHS) is a nationally representative survey conducted by the Ministry of Health and Social Services, assisted by the Central Statistical Office, with the aim of gathering reliable information on fertility, family planning, infant and child mortality, maternal mortality, maternal and child health and nutrition. Interviewers collected information on the reproductive histories of 5,421 women 15-49 years and on the health of 3,562 children under the age of five years.
The Namibia Demographic and Health Survey (NDHS) is a national sample survey of women of reproductive age designed to collect data on mortality and fertility, socioeconomic characteristics, marriage patterns, breastfeeding, use of contraception, immunisation of children, accessibility to health and family planning services, treatment of children during episodes of illness, and the nutritional status of women and children. More specifically, the objectives of NDHS are: - To collect data at the national level which will allow the calculation of demographic rates, particularly fertility rates and child mortality rates, and maternal mortality rates; To analyse the direct and indirect factors which determine levels and trends in fertility and childhood mortality, Indicators of fertility and mortality are important in planning for social and economic development; - To measure the level of contraceptive knowledge and practice by method, region, and urban/rural residence; - To collect reliable data on family health: immunisations, prevalence and treatment of diarrhoea and other diseases among children under five, antenatal visits, assistance at delivery and breastfeeding; - To measure the nutritional status of children under five and of their mothers using anthropometric measurements (principally height and weight).
MAIN RESULTS
According to the NDHS, fertility is high in Namibia; at current fertility levels, Namibian women will have an average of 5.4 children by the end of their reproductive years. This is lower than most countries in sub-Saharan Africa, but similar to results from DHS surveys in Botswana (4.9 children per woman) and Zimbabwe (5.4 children per woman). Fertility in the South and Central regions is considerably lower (4.1 children per woman) than in the Northeast (6.0) and Northwest regions (6.7).
About one in four women uses a contraceptive method: 29 percent of married women currently use a method (26 percent use a modem method), and 23 percent of all women are current users. The pill, injection and female sterilisation are the most popular methods among married couples: each is used by about 7 to 8 percent of currently married women. Knowledge of contraception is high, with almost 90 percent of all women age 15-49 knowing of any modem method.
Certain groups of women are much more likely to use contraception than others. For example, urban women are almost four times more likely to be using a modem contraceptive method (47 percent) than rural women (13 percent). Women in the South and Central regions, those with more education, and those living closer to family planning services are also more likely to be using contraception.
Levels of fertility and contraceptive use are not likely to change until there is a drop in desired family size and until the idea of reproductive choice is more widely accepted. At present, the average ideal family size (5.0 children) is only slightly lower than the total fertility rate (5.4 children). Thus, the vast majority of births are wanted.
On average, Namibian women have their first child when they are about 21 years of age. The median age at first marriage is, however, 25 years. This indicates that many women give birth before marriage. In fact, married women are a minority in Namibia: 51 percent of women 15-49 were not married, 27 percent were currently married, 15 percent were currently living with a man (informal union), and 7 percent were widowed, divorced or separated. Therefore, a large proportion of children in Namibia are born out of wedlock.
The NDHS also provides inlbrmation about maternal and child health. The data indicate that 1 in 12 children dies before the fifth birthday. However, infant and child mortality have been declining over the past decade. Infant mortality has fallen from 67 deaths per 1,000 live births for the period 1983-87 to 57 per 1,000 live births for the period 1988-92, a decline of about 15 percent. Mortality is higher in the Northeast region than elsewhere in Namibia.
The leading causes of death are diarrhoea, undemutrition, acute respiratory infection (pneumonia) and malaria: each of these conditions was associated with about one-fifth of under-five deaths. Among neonatal deaths low birth weight and birth problems were the leading causes of death. Neonatal tetanus and measles were not lbund to be major causes of death.
Maternal mortality was estimated from reports on the survival status of sisters of the respondent. Maternal mortality was 225 per 100,000 live births for the decade prior to the survey. NDHS data also show considerable excess male mortality at ages 15-49, which may in part be related to the war of independence during the 1980s.
Utilisation of maternal and child health services is high. Almost 90 percent of mothers received antenatal care, and two-thirds of children were bom in health facilities. Traditional birth attendants assisted only 6 percent of births in the five years preceding the survey. Child vaccination coverage has increased rapidly since independence. Ninety-five percent of children age 12-23 months have received at least one vaccination, while 76 percent have received a measles vaccination, and 70 percent three doses of DPT and polio vaccines.
Children with symptoms of possible acute respiratory infection (cough and rapid breathing) may have pneumonia and need to be seen by a health worker. Among children with such symptoms in the two weeks preceding the survey two-thirds were taken to a health facility. Only children of mothers who lived more than 30 km from a health facility were less likely to be taken to a facility.
About one in five children had diarrhoea in the two weeks prior to the survey. Diarrhoea prevalence was very high in the Northeast region, where almost half of children reportedly had diarrhoea. The dysentery epidemic contributed to this high figure: diarrhoea with blood was reported for 17 percent of children under five in the Northeast region. Among children with diarrhoea in the last two weeks 68 percent were taken to a health facility, and 64 percent received a solution prepared from ORS packets. NDHS data indicate that more emphasis needs to put on increasing fluids during diarrhoea, since only I 1 percent mothers of children with diarrhoea said they increased the amount of fluids given during the episode.
Nearly all babies are breastfed (95 percent), but only 52 percent are put on the breast immediately. Exclusive breastfeeding is practiced for a short period, but not for the recommended 4-6 months. Most babies are given water, formula, or other supplements within the first four months of life, which both jeopardises their nutritional status and increases the risk of infection. On average, children are breastfed for about 17 months, but large differences exist by region. In the South region children are breastfed lor less than a year, in the Northwest region for about one and a half years and in the Northeast region for almost two years.
Most babies are weighed at birth, but the actual birth weight could be recalled for only 44 percent of births. Using these data and data on reported size of the newborn, for all births in the last five years, it was estimated that the mean birth weight in Namibia is 3048 grams, and that 16 percent of babies were low birth weight (less than 2500 grams).
Stunting, an indication of chronic undemutrition, was observed for 28 percent of children under five. Stunting was more common in the Northeast region (42 percent) than elsewhere in Namibia. Almost 9 percent of children were wasted, which is an indication of acute undemutrition. Wasting is higher than expected for Namibia and may have been caused by the drought conditions during 1992.
Matemal height is an indicator of nutritional status over generations. Women in Namibia have an average height of 160 cm and there is little variation by region. The Body Mass Index (BM1), defined as weight divided by squared height, is a measure of current nutritional status and was lower among women in the Northwest and the Northeast regions than among women in the South and Central regions.
On average, women had a health facility available within 40 minutes travel time. Women in the Northwest region, however, had to travel more than one hour to reach the nearest health facility. At a distance of less than 10 km, 56 percent of women had access to antenatal services, 48 percent to maternity services, 72 percent to immunisation services, and 49 percent to family planning services. Within one hour of travel time, fifty-two percent of women had antenatal services, 48 percent delivery services, 64 percent immunisation services and 49 percent family planning services. Distance and travel time were greatest in the Northwest region.
The sample for the NDHS was designed to be nationally representative. The design involved a two- stage stratified sample which is self-weighting within each of the three health regions for which estimates of fertility and mortality were required--Northwest, Northeast, and the combined Central/South region. In order to have a sufficient number of cases for analysis, oversampling was necessary for the Northeast region, which has only 14.8 percent of the population. Therefore, the sample was not allocated proportionally across regions and is not completely
Introduction
This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends.
Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years).
Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates.
Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period.
Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health.
Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group.
Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods.
Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.
The 1997 Yemen Demographic Maternal and Child Health Survey (YDMCHS) is part of the worldwide Demographic and Health Surveys (DHS) program. The DHS program is designed to collect data on fertility, family planning and maternal and child health.
The YDMCHS-97 has the following objectives: 1. Provide policymakers and decisionmakers with a reliable database and analyses useful for policy choices and population programs, and provide researchers, other interested persons, and scholars with such data. 2. Update and expand the national population and health data base through collection of data which will allow the calculation of demographic rates, especially fertility rates, and infant and child mortality rates; 3. Analyse the direct and indirect factors which determine levels and trends of fertility. Indicators related to fertility will serve to elaborate plans for social and economic development; 4. Measure the level of contraceptive knowledge and practice by method, by rural and urban residence including some homogeneous governorates (Sana’a, Aden, Hadhramaut, Hodeidah, Hajjah and Lahj). 5. Collect quality data on family health: immunizations, prevalence and treatment of diarrhea and other diseases among children under five, prenatal visits, assistance at delivery and breastfeeding; 6. Measure the nutritional status of mothers and their children under five years (anthropometric measurements: weight and height); 7. Measure the level of maternal mortality at the national level. 8. Develop skills and resources necessary to conduct high-quality demographic and health surveys.
National
Sample survey data [ssd]
SAMPLE DESIGN
The 1997 YDMCHS was based on a national sample in order to provide estimates for general indicators for the following domains: Yemen as a whole, urban and rural areas (each as a separate domain), three ecological zones identified as Coastal, Mountainous, and Plateau and Desert, as well as governorates with a sample size of at least 500 completed cases. The survey sample was designed as a two-stage cluster sample of 475 enumeration areas (EA), 135 in urban areas and 340 in rural areas. The master sample, based on the 1994 census frame, was used as the frame for the 1997 YDMCHS. The population covered by the Yemen survey was the universe of all ever-married women age 15-49. The initial target sample was 10,000 completed interviews among eligible women, and the final sample was 10,414. In order to get this number of completed interviews, and using the response rate found in the 1991-92 YDMCHS survey, a total of 10,701 of the 11,435 potential households selected for the household sample were completed.
In each selected EA, a complete household listing operation took place between July and September 1997, and was undertaken by nineteen (19) field teams, taking into consideration the geographical closeness of the areas assigned to each team.
Note: See detailed description of sample design in APPENDIX B of the final survey report.
Face-to-face [f2f]
Two Questionnaires were used to collect survey data:
Household Questionnaire: The household questionnaire consists of two parts: a household schedule and a series of questions relating to the health and socioeconomic status of the household. The household schedule was used to list all usual household members. For each of the individuals included in the schedule, information was collected on the relationship to the household head, age, sex, marital status (for those 10 years and older), educational level (for those 6 years and older) and work status (for those 10 years and older). It also collects information on fertility, general mortality and child survival. The second part of the household questionnaire included questions on housing characteristics including the type of dwelling, location, materials used in construction, number of rooms, kitchen in use, main source of drinking water and health related aspects, lighting and toilet facilities, disposal of garbage, durable commodities, and assets, type of salt the household uses for cooking, and other related residential information.
Individual Questionnaire: The individual questionnaire was administered to all ever-married women age 15-49 years who were usual residents. It contained 10 sections on the followings topics: - Respondent's background - Reproduction - Family planning - Pregnancy and breastfeeding - Immunization and health - Birth preferences - Marriage and husband's background - Maternal mortality - Female circumcision - Height and weight
10,701 households, distributed between urban (3,008 households) and rural areas (7,693), households which were successfully interviewed in the 1997 YDMCHS. This represents a country-wide response rate of 98.2 percent (98.7 and 98.0 percent, respectively, for urban and rural areas).
A total of 11,158 women were identified as eligible to be interviewed. Questionnaires were completed for 10,414 women, which represents a response rate of 93.3 percent. The response rate in urban areas was 93 percent; and in rural areas it was 93.5 percent.
Note: See summarized response rates by place of residence in Table 1.1 of the final survey report.
The estimates from a sample surveys are affected by two types of errors: (1) non-sampling error, and (2) sampling error. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the YDMCHS-97 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the YDMCHS-97 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would have yielded results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistics in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the YDMCHS-97 sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the YDMCHS-97 is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearization method of variance estimate for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimate of more complex statistics such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX C of the final survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women and men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX D of the final survey report.
Total first marriage rates and age-specific first marriage rates per 1,000 females, all marriages, by place of occurrence, 2000 to 2004.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Standard pediatric growth curves cannot be used to impute missing height or weight measurements in individual children. The Michaelis-Menten equation, used for characterizing substrate-enzyme saturation curves, has been shown to model growth in many organisms including nonhuman vertebrates. We investigated whether this equation could be used to interpolate missing growth data in children in the first three years of life and compared this interpolation to several common interpolation methods and pediatric growth models.
Methods: We developed a modified Michaelis-Menten equation and compared expected to actual growth, first in a local birth cohort (N=97) and then in a large, outpatient, pediatric sample (N=14,695).
Results: The modified Michaelis-Menten equation showed excellent fit for both infant weight (median RMSE: boys: 0.22kg [IQR:0.19; 90%<0.43]; girls: 0.20kg [IQR:0.17; 90%<0.39]) and height (median RMSE: boys: 0.93cm [IQR:0.53; 90%<1.0]; girls: 0.91cm [IQR:0.50;90%<1.0]). Growth data were modeled accurately with as few as four values from routine well-baby visits in year 1 and seven values in years 1-3; birth weight or length was essential for best fit. Interpolation with this equation had comparable (for weight) or lower (for height) mean RMSE compared to the best-performing alternative models.
Conclusions: A modified Michaelis-Menten equation accurately describes growth in healthy babies aged 0–36 months, allowing interpolation of missing weight and height values in individual longitudinal measurement series. The growth pattern in healthy babies in resource-rich environments mirrors an enzymatic saturation curve.
Methods
Sources of data: Information on infants was ascertained from two sources: the STORK birth cohort and the STARR research registry. (1) Detailed methods for the STORK birth cohort have been described previously. In brief, a multiethnic cohort of mothers and babies was followed from the second trimester of pregnancy to the babies’ third birthday. Healthy women aged 18–42 years with a single-fetus pregnancy were enrolled. Households were visited every four months until the baby’s third birthday (nine baby visits), with the weight of the baby at each visit recorded in pounds. Medical charts were abstracted for birth weight and length. (2) STARR (starr.stanford.edu) contains electronic medical record information from all pediatric and adult patients seen at Stanford Health Care (Stanford, CA). STARR staff provided anonymized information (weight, height and age in days for each visit through age three years; sex; race/ethnicity) for all babies during the period 03/2013–01/2022 followed from birth to at least 36 months of age with at least five well-baby care visits over the first year of life.
Inclusion of data for modeling: All observed weight and height values were evaluated in kilograms (kg) and centimeters (cm), respectively. Any values assessed beyond 1,125 days (roughly 36 months) and values for height and weight deemed implausible by at least two reviewers (e.g., significant losses in height, or marked outliers for weight and height) were excluded from the analysis. Additionally, weights assessed between birth and 19 days were excluded. At least five observations across the 36-month period were required: babies with fewer than five weight or height values after the previous criteria were excluded from analyses.
Model: We developed our weight model using values from STORK babies and then replicated it with values from the STARR babies. Height models were evaluated in STARR babies only because STORK data on height were scant. The Michaelis-Menten equation is described as follows: v = Vmax ([S]/(Km + [S]) , where v is the rate of product formation, Vmax is the maximum rate of the system, [S] is the substrate concentration, and Km is a constant based upon the enzyme’s affinity for the particular substrate. For this study the equation became: P = a1 (Age/(b1+ Age)) + c1, where P was the predicted value of weight (kg) or height (cm), Age was the age of the infant in days, and c1 was an additional constant over the original Michaelis-Menten equation that accounted for the infant’s non-zero weight or length at birth. Each of the parameters a1, b1 and c1 was unique to each child and was calculated using the nonlinear least squares (nls) method. In our case, weight data were fitted to a model using the statistical language R, by calling the formula nls() with the following parameters: fitted_model <-nls(weights~(c1+(a1*ages)/(b1+ages)), start = list(a1 = 5, b1 = 20, c1=2.5)), where weights and ages were vectors of each subject’s weight in kg and age in days. The default Gauss-Newton algorithm was used. The optimization objective is not convex in the parameters and can suffer from local optima and boundary conditions. In such cases good starting values are essential: the starting parameter values (a1=5, b1=20, c1=2.5) were adjusted manually using the STORK dataset to minimize model failures; these tended to occur when the parameter values, particularly a1 and b1, increased without bound during the iterative steps required to optimize the model. These same parameter values were used for the larger STARR dataset. The starting height parameter values for height modeling were higher than those for weight modeling, due to the different units involved (cm vs. kg) (a1=60, b1=530, c1=50). Because this was a non-linear model, goodness of fit was assessed primarily via root mean squared error (RMSE) for both weight and height.
Imputation tests: To test for the influence of specific time points on the models, we limited our analysis to STARR babies with all recommended well-baby visits (12 over three years). Each scheduled visit except day 1 occurred in a time window around the expected well-baby visit (Visit1: Day 1, Visit2: days 20–44, Visit3: 46–90, Visit4: 95–148, Visit5: 158–225, Visit6: 250–298, Visit7: 310–399, Visit8: 410–490, Visit9: 500–600, Visit10: 640–800, Visit11: 842–982, Visit12: 1024–1125). We considered two different sets: infants with all scheduled visits in the first year of life (seven total visits) and those with all scheduled visits over the full three-year timeframe (12 total visits). We fit these two sets to the model, identifying baseline RMSE. Then, every visit, and every combination of two to five visits were dropped, so that the RMSE or model failures for a combination of visits could be compared to baseline.
Prediction: We sought to predict weight or height at 36 months (Y3) from growth measures assessed only up to 12 months (Y1) or to 24 months (Y1+Y2), utilizing the “last value” approach. In brief, the last observation for each child (here, growth measures at 36 months) is used to assess overall model fit, by focusing on how accurately the model can extrapolate the measure at this time point. We identified all STARR infants with at least five time points in Y1 and at least two time points in both Y2 and Y3, with the selection of these time points based on maximizing the number of later time points within the constraints of the well-baby visit schedule for Y2 and Y3. The per-subject set of time points (Y1-Y3) was fitted using the modified Michaelis-Menten equation and the mean squared error was calculated, acting as the “baseline” error. The model was then run on the subset of Y1 only and of Y1+Y2 only. To test predictive accuracy of these subsets, the RMSE was calculated using the actual weights or heights versus the predicted weights or heights of the three time series.
Comparison with other models: We examined how well the modified Michaelis-Menten equation performed interpolation in STARR babies compared to ten other commonly used interpolation methods and pediatric growth models including: (1) the ‘last observation carried forward’ model; (2) the linear model; (3) the robust linear model (RLM method, base R MASS package); (4) the Laird and Ware linear model (LWMOD method); (5) the generalized additive model (GAM method); (6) locally estimated scatterplot smoothing (LOESS method, base R stats package); (7) the smooth spline model (smooth.spline method, base R stats package); (8) the multilevel spline model (Wand method); (9) the SITAR (superimposition by translation and rotation) model and (10) fast covariance estimation (FACE method).
Model fit used the holdout approach: a single datapoint (other than birth weight or birth length) was randomly removed from each subject, and the RMSE of the removed datapoint was calculated as the model fitted to the remaining data.
The hbgd package was used to fit all models except the ‘last observation carried forward’ model, the linear model and the SITAR model. For the ‘last observation carried forward’ model, the holdout data point was interpolated by the last observation by converting the random holdout value to NA and then using the function na.locf() from the zoo R package. For the simple linear model, the holdout-filtered data were used to determine the slope and intercept via R’s lm() function, which were then used to calculate the holdout value. For the SITAR model, each subject was fitted by calling the sitar() function with df=2 to minimize failures, and the RMSE of the random holdout point was subsequently calculated with the predict() function. For this analysis, set.seed(1234) was used to initialize the pseudorandom generator.
The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.
The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.
National
Sample survey data
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed description of sample design in APPENDIX B of the survey report.
Face-to-face
The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.
The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:
In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.
Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.
A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed
The Sahel Women Empowerment and Demographic Dividend (P150080) project in Burkina Faso focuses on advancing women's empowerment to spur demographic transition and mitigate gender disparities. This project seeks to empower young women by promoting entrepreneurship through business skills training and grants, and by enhancing access to reproductive health information and contraception, thereby aiming to lower fertility rates.
The World Bank Africa Gender Innovation Lab, along with its partners, is conducting detailed impact evaluations of the SWEDD program’s key initiatives to gauge their effects on child marriage, fertility, and the empowerment of adolescent girls and young women.
This data represents the first round of data collection (baseline) for the impact evaluation and include a household and community level surveys. The household level sample comprises 9857 households, 70,169 individuals and 9382 adolescent girls and young wives aged 24 living in the Boucle du Mouhoun and the East regions of Burkina Faso. The community level sample includes 175 villages.
The insights derived from this survey could help policymakers develop strategies to: - Reduce fertility and child marriage by enhancing access to contraceptives and broadening reproductive health education. - Promote women’s empowerment by increasing their participation in economic activities
This data is valuable for planners who focus on improving living standards, particularly for women. The Ministry of Women, National Solidarity, Family, and Humanitarian Action of Burkina Faso, along with District Authorities, Research Institutions, NGOs, and the general public, stand to benefit from this survey data.
Burkina Faso, Regions of Boucle du Mouhoun and East
The unit of analysis is adolescent girls for the adolescent survey and households for the household survey.
Sample survey data [ssd]
We randomly selected 200 villages from the 11 provinces in the two regions of the Boucle du Mouhoun and the East. The 200 villages were selected proportionally, based on the formula (Np/N)*200, where Np represents the number of eligible villages in the province and N the total number of eligible villages. 25 villages were later dropped because of lack of safety.
A census was first administered in each village to identify eligible girls and young wives, as well as households with these eligible individuals. All households with at least one eligible person then constituted the universe from which the survey sample was drawn. In total 9857 households and 9382 girls and young wives were sampled. A village-level questionnaire was also administered.
The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.
Computer Assisted Personal Interview [capi]
The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education of household members 3. Occupations of household members 4. Characteristics of housing and durable goods 5. Food security 6. Household head's aspirations, as well as those of a boy aged 12 to 24 7. Opinions on women's empowerment and gender equality
The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation
The questionnaire administered at the village-level contains the following sections: 1. Social norms (marriage norms) 2. Ethnic and religious compositions 3. Economic infrastructures (markets and roads) 4. Social services a. Health b. Education
The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to each eligible pre-selected individual within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The village-level questionnaire was administered to a group of three to five village leaders with enough knowledge of the village. The enumerators were instructed to include women in this group whenever possible. The questionnaires were written in French, translated into the local languages, and programmed on tablets in French using the CAPI program.
Data was anonymized through decoding and local suppression.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As China continues to implement its progressive fertility promotion policy, there has been a drastic decline in the fertility rate. Given that the migrant population constitutes more than a quarter of China’s total population, enhancing the willingness of this demographic to have additional children through policy-guided urban public services is pivotal for optimizing China’s population development strategy. This study analyzes the influence of urban public services on the reproductive intentions of the migrant population, utilizing data from 110,667 migrant families with one child, drawn from China’s Migrant Population Dynamic Monitoring data in 2016 and 2018. The data analysis reveals several key findings: (1) Urban public services, overall, exhibit a notable positive effect on the willingness of the migrant population to have more children, albeit with limitations and a declining trend. (2) Among urban public services, primary basic education significantly impacts the willingness of the migrant population to expand their families. (3) Large cities have created a ’reverse screening’ effect on the migrant population, leading to differential access to public services. This scenario caters effectively to the high human capital migrant individuals while reducing accessibility to livelihood public services for the low human capital migrant population. This paper critically evaluates China’s progressively adjusted fertility policy from the perspective of the migrant population. It underscores the necessity of establishing a comprehensive fertility support policy system across China.
The 2016 Timor-Leste Demographic and Health Survey (TLDHS) was implemented by the General Directorate of Statistics (GDS) of the Ministry of Finance in collaboration with the Ministry of Health (MOH). Data collection took place from 16 September to 22 December, 2016.
The primary objective of the 2016 TLDHS project is to provide up-to-date estimates of basic demographic and health indicators. The TLDHS provides a comprehensive overview of population, maternal, and child health issues in Timor-Leste. More specifically, the 2016 TLDHS: • Collected data at the national level, which allows the calculation of key demographic indicators, particularly fertility, and child, adult, and maternal mortality rates • Provided data to explore the direct and indirect factors that determine the levels and trends of fertility and child mortality • Measured the levels of contraceptive knowledge and practice • Obtained data on key aspects of maternal and child health, including immunization coverage, prevalence and treatment of diarrhea and other diseases among children under age 5, and maternity care, including antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and collected anthropometric measures to assess nutritional status in children, women, and men • Tested for anemia in children, women, and men • Collected data on the knowledge and attitudes of women and men about sexually-transmitted diseases and HIV/AIDS, potential exposure to the risk of HIV infection (risk behaviors and condom use), and coverage of HIV testing and counseling • Measured key education indicators, including school attendance ratios, level of educational attainment, and literacy levels • Collected information on the extent of disability • Collected information on non-communicable diseases • Collected information on early childhood development • Collected information on domestic violence • The information collected through the 2016 TLDHS is intended to assist policy makers and program managers in evaluating and designing programs and strategies for improving the health of the country’s population.
National
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the TLDHS 2016 survey is the 2015 Timor-Leste Population and Housing Census (TLPHC 2015), provided by the General Directorate of Statistics. The sampling frame is a complete list of 2320 non-empty Enumeration Areas (EAs) created for the 2015 population census. An EA is a geographic area made up of a convenient number of dwelling units which served as counting units for the census, with an average size of 89 households per EA. The sampling frame contains information about the administrative unit, the type of residence, the number of residential households and the number of male and female population for each of the EAs. Among the 2320 EAs, 413 are urban residence and 1907 are rural residence.
There are five geographic regions in Timor-Leste, and these are subdivided into 12 municipalities and special administrative region (SAR) of Oecussi. The 2016 TLDHS sample was designed to produce reliable estimates of indicators for the country as a whole, for urban and rural areas, and for each of the 13 municipalities. A representative probability sample of approximately 12,000 households was drawn; the sample was stratified and selected in two stages. In the first stage, 455 EAs were selected with probability proportional to EA size from the 2015 TLPHC: 129 EAs in urban areas and 326 EAs in rural areas. In the second stage, 26 households were randomly selected within each of the 455 EAs; the sampling frame for this household selection was the 2015 TLPHC household listing available from the census database.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used for the 2016 TLDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Timor-Leste.
The data processing operation included registering and checking for inconsistencies, incompleteness, and outliers. Data editing and cleaning included structure and consistency checks to ensure completeness of work in the field. The central office also conducted secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two staff who took part in the main fieldwork training. Data editing was accomplished with CSPro software. Secondary editing and data processing were initiated in October 2016 and completed in February 2017.
A total of 11,829 households were selected for the sample, of which 11,660 were occupied. Of the occupied households, 11,502 were successfully interviewed, which yielded a response rate of 99 percent.
In the interviewed households, 12,998 eligible women were identified for individual interviews. Interviews were completed with 12,607 women, yielding a response rate of 97 percent. In the subsample of households selected for the men’s interviews, 4,878 eligible men were identified and 4,622 were successfully interviewed, yielding a response rate of 95 percent. Response rates were higher in rural than in urban areas, with the difference being more pronounced among men (97 percent versus 90 percent, respectively) than among women (98 percent versus 94 percent, respectively). The lower response rates for men were likely due to their more frequent and longer absences from the household.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TLDHS 2016 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TLDHS 2016 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TLDHS 2016 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TLDHS 2016 is a SAS program. This program used the Taylor linearization method of variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Height and weight data completeness and quality for children - Completeness of information on siblings - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends
See details of the data quality tables in Appendix C of the survey final report.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.