As many general retailers or mass distribution channels experienced an exponential growth during the months of the COVID-19 induced lockdown in France, the source wanted to measure the total number of backlinks on the different retailers websites. Thus, Carrefour.fr was the leading general retailer with the most backlinks amounting to ***** on their website. A strategy of acquiring backlinks which therefore seems to be paying off for the major retailer, which drew around ***** percent of its overall traffic through this means.
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data consist of a collection of legitimate as well as phishing website instances. Each website is represented by the set of features which denote, whether website is legitimate or not. Data can serve as an input for machine learning process.
Here, the two variants of the Phishing Dataset are presented.
Full variant - dataset_full.csv
Small variant - dataset_small.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total Number of District Website District Charsadda Year 2021
The total number of visitors to government websites in the last minute.
In September 2020, the Colombian telemedicine app 1Doc3 received a total of *** thousand visits, up from *** thousand visits reported a month earlier. The total number of telemedicine appointments carried out in the South American country added up to nearly *** million as of May 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
https://data.gov.tw/licensehttps://data.gov.tw/license
The cumulative number of visitors to the micro-enterprise phoenix website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total numbers of District Website in District Chitral Lower Year 2021
https://data.gov.tw/licensehttps://data.gov.tw/license
Cumulative Page Views Statistics for Mini Entrepreneurial Phoenix Website Subpages
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset contains the total number of page views for the dates 1/1/2014 through 12/31/2016. Data obtained through Google Analytics.
This dataset is composed of the URLs of the top 1 million websites. The domains are ranked using the Alexa traffic ranking which is determined using a combination of the browsing behavior of users on the website, the number of unique visitors, and the number of pageviews. In more detail, unique visitors are the number of unique users who visit a website on a given day, and pageviews are the total number of user URL requests for the website. However, multiple requests for the same website on the same day are counted as a single pageview. The website with the highest combination of unique visitors and pageviews is ranked the highest
As online shopping experienced an exponential growth during the months of the COVID-19 induced lockdown in France, the source wanted to measure the total number of backlinks on the different cosmetic companies websites. Thus, Loccitane.com was the leading cosmetic company with the most backlinks amounting to 2,800 on their website.
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This refers to the number of in-scope businesses with a web presence as a proportion of the total number of in-scope businesses. A web presence includes a website, home page or presence on another entity's website (including a related business). It excludes inclusion in an online directory and any other webpages where the business does not have control over the content of the page. For more details, see description of indicator B5 at https://www.itu.int/en/ITU-D/Statistics/Documents/coreindicators/Core-List-of-Indicators_March2022.pdf
Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.
In April 2025, the number of visits to the travel and tourism website tripadvisor.com declined over the previous year, totaling roughly 114 million. In 2025, tripadvisor.com was one of the most visited travel and tourism websites worldwide.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data, exported from Google Analytics displays the most popular 50 pages on Austintexas.gov based on the following: Views: The total number of times the page was viewed. Repeated views of a single page are counted. Bounce Rate: The percentage of single-page visits (i.e. visits in which the person left your site from the entrance page without interacting with the page).
*Note: On July 1, 2023, standard Universal Analytics properties will stop processing data.
As of 2025, there are about 24 million eCommerce sites worldwide—a drop from the previous high of 27 million but still far above the 9.2 million recorded in 2019. The United States alone accounts for nearly 12 million online stores, underlining the global shift to digital commerce.
As many general retailers or mass distribution channels experienced an exponential growth during the months of the COVID-19 induced lockdown in France, the source wanted to measure the total number of backlinks on the different retailers websites. Thus, Carrefour.fr was the leading general retailer with the most backlinks amounting to ***** on their website. A strategy of acquiring backlinks which therefore seems to be paying off for the major retailer, which drew around ***** percent of its overall traffic through this means.