100+ datasets found
  1. C

    Census: Population - Travel for study and work

    • ckan.mobidatalab.eu
    csv, json
    Updated Apr 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Services Unit (2023). Census: Population - Travel for study and work [Dataset]. https://ckan.mobidatalab.eu/hr/dataset/ds1486-population-census-travel-for-study-and-work
    Explore at:
    csv(8062), json(18117)Available download formats
    Dataset updated
    Apr 23, 2023
    Dataset provided by
    Statistical Services Unit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    the dataset shows, for each NIL, the number of trips for study and work made starting from that NIL. The dataset is the result of the elaborations of the General Population Census of 2011. This dataset was released by the municipality of Milan. The path to use to find the original dataset on sisi.comune.milano.it is: sisi.comune.milano.it - ​​2011 Census - CENSIONS (POPULATION AND HOMES) - Travel for study and work

  2. N

    De Tour Village, MI Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). De Tour Village, MI Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/de-tour-village-mi-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    De Tour Village, Michigan
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the De Tour Village, MI population pyramid, which represents the De Tour Village population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for De Tour Village, MI, is 13.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for De Tour Village, MI, is 114.9.
    • Total dependency ratio for De Tour Village, MI is 128.7.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for De Tour Village, MI is 0.9.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the De Tour Village population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the De Tour Village for the selected age group is shown in the following column.
    • Population (Female): The female population in the De Tour Village for the selected age group is shown in the following column.
    • Total Population: The total population of the De Tour Village for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for De Tour Village Population by Age. You can refer the same here

  3. g

    INSEE indicators – Tours | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INSEE indicators – Tours | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_https-data-tours-metropole-fr-explore-dataset-indicateurs-insee-tours-/
    Explore at:
    Description

    This dataset comes from INSEE data from the population census. (For the moment data from referencing as at 1 January 2018) It reflects the different characteristics of Tours and its neighbourhoods through indicators such as the number of inhabitants, the age distribution of the population, CSPs, households, housing and mobility. Raw data are available on INSEE website

  4. N

    De Tour Village, MI Age Group Population Dataset: A Complete Breakdown of De...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). De Tour Village, MI Age Group Population Dataset: A Complete Breakdown of De Tour Village Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/de-tour-village-mi-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    De Tour Village, Michigan
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the De Tour Village population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for De Tour Village. The dataset can be utilized to understand the population distribution of De Tour Village by age. For example, using this dataset, we can identify the largest age group in De Tour Village.

    Key observations

    The largest age group in De Tour Village, MI was for the group of age 65 to 69 years years with a population of 36 (15.58%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in De Tour Village, MI was the Under 5 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the De Tour Village is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of De Tour Village total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for De Tour Village Population by Age. You can refer the same here

  5. 2023 Census main means of travel to education by statistical area 3

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2025). 2023 Census main means of travel to education by statistical area 3 [Dataset]. https://datafinder.stats.govt.nz/table/122495-2023-census-main-means-of-travel-to-education-by-statistical-area-3/
    Explore at:
    csv, geopackage / sqlite, dbf (dbase iii), mapinfo tab, mapinfo mif, geodatabaseAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their place of study, for the census usually resident population count who are studying (part time or full time), by main means of travel to education from the 2018 and 2023 Censuses.

    The main means of travel to education categories are:

    • Study at home
    • Drive a car, truck, or van
    • Passenger in a car, truck, or van
    • Bicycle
    • Walk or jog
    • School bus
    • Public bus
    • Train
    • Ferry
    • Other.

    Main means of travel to education is the usual method a person used to travel the longest distance to their place of study.

    Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.

    Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.

    This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:

    Download data table using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).

    Educational institution address time series

    Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.

    Rows excluded from the dataset

    Rows show SA3 of usual residence by SA3 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Main means of travel to education quality rating

    Main means of travel to education is rated as moderate quality.

    Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Educational institution address quality rating

    Educational institution address is rated as moderate quality.

    Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  6. f

    Census - Usually resident population by main means of travel to education...

    • figure.nz
    csv
    Updated Oct 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Figure.NZ (2024). Census - Usually resident population by main means of travel to education 2018, 2023 [Dataset]. https://figure.nz/table/lwQL2kqWvmqnnoET
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 3, 2024
    Dataset provided by
    Figure.NZ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    The New Zealand Census of Population and Dwellings is the official count of how many people and dwellings there are in New Zealand. It provides a snapshot of our society at a point in time and helps to tell the story of its social and economic change. The 2023 Census, held on Tuesday 7 March, was the 35th New Zealand Census of Population and Dwellings. The first official census was run in 1851, and since 1877 there has been a census every five years, with only four exceptions.

  7. m

    Synthetic travel demand for Paris and Île-de-France

    • data.mendeley.com
    Updated May 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Hörl (2021). Synthetic travel demand for Paris and Île-de-France [Dataset]. http://doi.org/10.17632/p3v8zmps2w.1
    Explore at:
    Dataset updated
    May 10, 2021
    Authors
    Sebastian Hörl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Île-de-France, Paris, France
    Description

    The data set contains a synthetic representation of the travel demand in the Île-de-France region around Paris. The data is structured in a database containing a list of households, and a database containing a list of persons, both with sociodemographic attributes. Furthermore, the activities and connecting trips of these persons during an average day in the region are provided, both in tabular and spatial format. While trips are described by their mode of transport, departure and arrival time, activities are characterized by their purpose (home, work, leisure, ...) and their duration. The data set was generated using an open software framework that is published alongside the data set. All input data sets (French census data, National household travel survey, tax information, ...) are publicly available as open data. Using the accompanying code it is, therefore, possible to regenerate this data at any time.

  8. V

    Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Urban Area...

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Urban Area (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-non-single-occupancy-vehicle-sov-travel-percent-by-urban-area-acs-5-year
    Explore at:
    csv(53336)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Area covered
    Virginia
    Description

    2013-2023 Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Census Urban Area. Contains estimates. Workers 16 years and over, commuting to work, who are NOT using a car, truck, or van when driving alone.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table DP03, Column DP03_0019PE Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    Documentation of the method to calculate Non-SOV is provided by the Federal Highway Administration (https://www.fhwa.dot.gov/tpm/guidance/hif18024.pdf) page 38 explains the calculation of the Non-SOV Travel measure.

    Urban areas with values of -666,666,666 or 0 have blanks calculated for Non-SOV values.

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  9. 2023 Census main means of travel to work by statistical area 3

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2025). 2023 Census main means of travel to work by statistical area 3 [Dataset]. https://datafinder.stats.govt.nz/table/122496-2023-census-main-means-of-travel-to-work-by-statistical-area-3/
    Explore at:
    mapinfo mif, csv, dbf (dbase iii), geodatabase, mapinfo tab, geopackage / sqliteAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.

    The main means of travel to work categories are:

    • Work at home
    • Drive a private car, truck, or van
    • Drive a company car, truck, or van
    • Passenger in a car, truck, van, or company bus
    • Public bus
    • Train
    • Bicycle
    • Walk or jog
    • Ferry
    • Other.

    Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.

    Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.

    Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.

    This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:

    Download data table using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).

    Workplace address time series

    Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.

    Working at home

    In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.

    Rows excluded from the dataset

    Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Main means of travel to work quality rating

    Main means of travel to work is rated as moderate quality.

    Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Workplace address quality rating

    Workplace address is rated as moderate quality.

    Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  10. a

    SA2-W22a Method of Travel to Work by Age by Sex-Census 2016 - Dataset -...

    • data.aurin.org.au
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SA2-W22a Method of Travel to Work by Age by Sex-Census 2016 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/au-govt-abs-census-sa2-w22a-method-of-travel-to-work-by-age-by-sx-census-2016-sa2-2016
    Explore at:
    Dataset updated
    Mar 5, 2025
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    SA2 based data for Method of Travel to Work by Age by Sex, in Working Population Profile (WPP), 2016 Census. Count of employed persons aged 15 years and over. W22 is broken up into 5 sections (W22a - W22e), this section contains 'Males One method Train 15-24 years' - 'Males Two methods Bus and Other Total'. The data is by SA2 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.

  11. W

    Method of travel to work - Daytime Population (2001 Census)

    • cloud.csiss.gmu.edu
    • data.europa.eu
    • +1more
    html
    Updated Jan 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Kingdom (2020). Method of travel to work - Daytime Population (2001 Census) [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/method_of_travel_to_work_-_daytime_population_2001_census
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 4, 2020
    Dataset provided by
    United Kingdom
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Method of travel to work - Daytime population Source: Census 2001 Publisher: Neighbourhood Statistics Geographies: Output Area (OA), Lower Layer Super Output Area (LSOA), Local Authority District (LAD), Government Office Region (GOR), National Geographic coverage: England and Wales Time coverage: 2001 Type of data: Survey (census) Notes: The day-time population is defined for people aged 16 to 74, as those people who live and work in the area (or do not work) and those people who live outside the area and work inside the area. 'No fixed place of work' is counted as if working in the area. The method of travel to work is for the longest part, by distance, of the usual journey to work.

  12. O

    ACT HTS - 06 Demographics of Travel (2022)

    • data.act.gov.au
    application/rdfxml +5
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TCCS Data Capability (2025). ACT HTS - 06 Demographics of Travel (2022) [Dataset]. https://www.data.act.gov.au/Transport/ACT-HTS-06-Demographics-of-Travel-2022-/fq54-xp4j
    Explore at:
    json, xml, csv, application/rssxml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    TCCS Data Capability
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This spreadsheet replicates selected data tables from the ACT & Queanbeyan Household Travel Survey dashboard. Please refer to the attached spreadsheet on this page.

    About the Travel Demographics theme The data shown replicates the dashboard 'Method of travel' theme, with additional filters applied for demographic attributes. This includes people's gender, age, licence holding status and household income level.

    Notes: - The small sample size (approximately 1 per cent) of people who either did not report their gender, or who did not identify as male or female, prevented their analysis as a distinct cohort group. Responses from these participants have been randomly allocated to the male and female groups.

    • Household income quartiles are derived by a summation of individual income ranges. As no adjustment has been made for household size, single person households are over-represented in the lowest income quartile. The quartile ranges have been calculated separately for each survey year.

    • An employment status of 'Not in workforce' is only applied to children. Retired people will be classed as 'Not employed'.

    Note that the tables provided represent a small subset of data available. Only the number and proportion of trips are shown; use of the dashboard or raw survey datasets allow more complex descriptions of travel to be developed.

    Source data The data shown is not a Census of travel, but a large survey of several thousand households from across the ACT and Queanbeyan. As with any survey there will be some variability in the accuracy of the results, and how well they reflect the movement of the entire population. For instance, if the survey were to be completed on another day, or with a different subset of households, the results would be slightly different. Interpretations of the data should keep this variability in mind: these are estimates of the broad shape of travel only. Even for the same person, travel behaviour will vary according to many factors: day of week, month of year, season, weather, school holidays, illness, family responsibilities, work from home opportunities, etc. Again, by summarising the travel of many different people, the data provides a view of average weekday patterns.

    In interpreting the data, it is worth noting the following points: - A zero cell does not necessarily mean the travel is never made, but rather that the survey participants did not make this travel on their particular survey day. - Values are rounded, and may not sum to the totals shown. Trip time periods are assigned using the mid point of travel: - AM peak (8am to 9am), PM peak (5pm to 6pm), Interpeak (9am to 5pm), Off-peak (after 6pm)

    The survey is described on the Transport Canberra and City Services' website: [Household Travel Survey homepage]

    Cell annotations and notes Some cells have annotations added to them, as follows: * : Statistically significant difference across survey years (at the 95% confidence level). Confidence intervals indicate where the true measure would typically fall if the survey were repeated multiple times (i.e., 95 times out of 100), recognising that each survey iteration may produce slightly different outcomes. ~ : Unreliable estimate (small sample or wide confidence interval)

    Additional information Analysis by Sift Research, March 2025. Contact research@sift.group for further information. Enclosed data tables shared under a 'CC BY' Creative Commons licence. This enables users to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. [>More information about CC BY]

  13. C

    Travel Time to Work

    • data.ccrpc.org
    csv
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Travel Time to Work [Dataset]. https://data.ccrpc.org/am/dataset/travel-time-to-work
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The Travel Time to Work indicator compares the mean, or average, commute time for Champaign County residents to the mean commute time for residents of Illinois and the United States as a whole. On its own, mean travel time of all commuters on all mode types could be reflective of a number of different conditions. Congestion, mode choice, changes in residential patterns, changes in the location of major employment centers, and changes in the transit network can all impact travel time in different and often conflicting ways. Since the onset of the COVID-19 pandemic in 2020, the workplace location (office vs. home) is another factor that can impact the mean travel time of an area. We don’t recommend trying to draw any conclusions about conditions in Champaign County, or anywhere else, based on mean travel time alone.

    However, when combined with other indicators in the Mobility category (and other categories), mean travel time to work is a valuable measure of transportation behaviors in Champaign County.

    Champaign County’s mean travel time to work is lower than the mean travel time to work in Illinois and the United States. Based on this figure, the state of Illinois has the longest commutes of the three analyzed areas.

    The year-to-year fluctuations in mean travel time have been statistically significant in the United States since 2014, and in Illinois in 2021 and 2022. Champaign County’s year-to-year fluctuations in mean travel time were statistically significant from 2021 to 2022, the first time since this data first started being tracked in 2005.

    Mean travel time data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Travel Time to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (17 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  14. ACS Travel Time To Work Variables - Boundaries

    • hub.arcgis.com
    • share-open-data-njtpa.hub.arcgis.com
    • +5more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Travel Time To Work Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/a31b5c96d5c54b2eb216d8f3896e35fc
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows workers' place of residence by commute length. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of commuters whose commute is 90 minutes or more. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08303Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. N

    De Tour Village, MI Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). De Tour Village, MI Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1db4e21-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    De Tour Village, Michigan
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of De Tour Village by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for De Tour Village. The dataset can be utilized to understand the population distribution of De Tour Village by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in De Tour Village. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for De Tour Village.

    Key observations

    Largest age group (population): Male # 85+ years (18) | Female # 65-69 years (23). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the De Tour Village population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the De Tour Village is shown in the following column.
    • Population (Female): The female population in the De Tour Village is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in De Tour Village for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for De Tour Village Population by Gender. You can refer the same here

  16. 2018 Census Main means of travel to work by Statistical Area 2

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2020). 2018 Census Main means of travel to work by Statistical Area 2 [Dataset]. https://datafinder.stats.govt.nz/table/104720-2018-census-main-means-of-travel-to-work-by-statistical-area-2/
    Explore at:
    csv, geodatabase, mapinfo mif, geopackage / sqlite, mapinfo tab, dbf (dbase iii)Available download formats
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    The 2018 Census commuter view dataset contains the employed census usually resident population count aged 15 years and over by statistical area 2 for the main means of travel to work variable from the 2018 Census. The geography corresponds to 2018 boundaries.

    This dataset is the base data for the ‘There and back again: our daily commute’ competition.

    This 2018 Census commuter view dataset is displayed by statistical area 2 geography and contains from-to (journey) information on an individual's usual residence and workplace address* by main means of travel to work.

    * Workplace address is coded from information supplied by respondents about their workplaces. Where respondents do not supply sufficient information, their responses are coded to ‘not further defined’. The 2018 Census commuter view datasets excludes these ‘not further defined’ areas, as such the sum of the counts for each region in this dataset may not be equal to the total employed census usually resident population count aged 15 years and over for that region.

    It is recommended that this dataset be downloaded as either a CSV or a file geodatabase.

    This dataset can be used in conjunction with the following spatial files by joining on the statistical area 2 code values:

    · Statistical Area 2 2018 (generalised)

    · Statistical Area 2 2018 (Centroid Inside)

    The data uses fixed random rounding to protect confidentiality. Counts of less than 6 are suppressed according to 2018 confidentiality rules. Values of -999 indicate suppressed data.

    Data quality ratings for 2018 Census variables, summarising the quality rating and priority levels for 2018 Census variables, are available.

    For information on the statistical area 2 geography please refer to the Statistical standard for geographic areas 2018.

  17. g

    Population Aged 5 by Means of Travel to Work, School or College, Municipal...

    • census.geohive.ie
    Updated Aug 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    censuscurator_geohive (2017). Population Aged 5 by Means of Travel to Work, School or College, Municipal Districts, Census 2016, Theme 11.1, Ireland, 2016, CSO & Tailte Éireann [Dataset]. https://census.geohive.ie/datasets/population-aged-5-by-means-of-travel-to-work-school-or-college-municipal-districts-census-2016-theme-11-1-ireland-2016-cso-osi/about
    Explore at:
    Dataset updated
    Aug 15, 2017
    Dataset authored and provided by
    censuscurator_geohive
    Area covered
    Description

    This feature layer was created using Census 2016 data produced by the Central Statistics Office (CSO) and Municipal Districts boundary data (generalised to 50m) produced by Tailte Éireann. The layer represents Census 2016 theme 11.1, population aged 5+ by means of travel to work, school or college. Attributes include a breakdown of population by means of travel to work, school or college (e.g. bicycle, car driver, on foot). Census 2016 theme 11 represents Commuting. The Census is carried out every five years by the CSO to determine an account of every person in Ireland. The results provide information on a range of themes, such as, population, housing and education. The data were sourced from the CSO. The Municipal District Boundary dataset generalised to 50m has been generated from the Tailte Éireann National Statutory Boundary dataset.

  18. a

    SA2-W21b Method of Travel to Work by Occupation-Census 2016 - Dataset -...

    • data.aurin.org.au
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SA2-W21b Method of Travel to Work by Occupation-Census 2016 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/au-govt-abs-census-sa2-w21b-method-of-travel-to-work-by-occ-census-2016-sa2-2016
    Explore at:
    Dataset updated
    Mar 5, 2025
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    SA2 based data for Method of Travel to Work by Occupation, in Working Population Profile (WPP), 2016 Census. Count of employed persons aged 15 years and over. W21 is broken up into 2 sections (W21a - W21b), this section contains 'Two methods Bus and Ferry Managers' - 'Total Total'. The data is by SA2 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.

  19. Travel Time to Work

    • catalog.data.gov
    • geodata.bts.gov
    • +1more
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Transportation Statistics (BTS) (Point of Contact) (2025). Travel Time to Work [Dataset]. https://catalog.data.gov/dataset/travel-time-to-work1
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Bureau of Transportation Statisticshttp://www.rita.dot.gov/bts
    Description

    The Travel Time to Work dataset was compiled using information from December 31, 2023 and updated December 12, 2024 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Travel Time to Work table from the 2023 American Community Survey (ACS) 5-year estimates was joined to 2023 tract-level geographies for all 50 States, District of Columbia and Puerto Rico provided by the Census Bureau. A new file was created that combines the demographic variables from the former with the cartographic boundaries of the latter. The national level census tract layer contains data on the number and percentage of commuters (workers 16 years and over who did not work from home) with a range of travel times to work. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529086

  20. a

    Total Employed Population (15 Years and Over) by Mode of Transportation and...

    • hub.arcgis.com
    • insights-york.opendata.arcgis.com
    • +2more
    Updated May 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Regional Municipality of York (2018). Total Employed Population (15 Years and Over) by Mode of Transportation and Gender, 2001 Census [Dataset]. https://hub.arcgis.com/datasets/9d732b2068f142a596765d46cd5ea4f2
    Explore at:
    Dataset updated
    May 14, 2018
    Dataset authored and provided by
    The Regional Municipality of York
    Area covered
    Description

    Presents socio-demographic information of York Region’s population and is aggregated from Statistics Canada’s Census data. For reference purposes, York Region data is compared to those of Ontario, Canada, the Greater Toronto Area and York Region local municipalities.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistical Services Unit (2023). Census: Population - Travel for study and work [Dataset]. https://ckan.mobidatalab.eu/hr/dataset/ds1486-population-census-travel-for-study-and-work

Census: Population - Travel for study and work

Explore at:
csv(8062), json(18117)Available download formats
Dataset updated
Apr 23, 2023
Dataset provided by
Statistical Services Unit
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

the dataset shows, for each NIL, the number of trips for study and work made starting from that NIL. The dataset is the result of the elaborations of the General Population Census of 2011. This dataset was released by the municipality of Milan. The path to use to find the original dataset on sisi.comune.milano.it is: sisi.comune.milano.it - ​​2011 Census - CENSIONS (POPULATION AND HOMES) - Travel for study and work

Search
Clear search
Close search
Google apps
Main menu