Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Townsend Deprivation Index is a measure of material deprivation first introduced by Peter Townsend in 1987. A Townsend score can be calculated using a combination of four census variables for any geographical area (provided census data is available for that area). The measure has been widely used in research for health, education and crime to establish whether relationships exist with deprivation. The Townsend scores below were calculated for the UK based on data from the 2011 Census and include a discussion with geographical visualisations of the findings.
HTTPS://CPRD.COM/DATA-ACCESSHTTPS://CPRD.COM/DATA-ACCESS
Patient postcode linked measures are available for patients in English practices that have consented to participate in the linkage scheme. Data are linked via Lower Super Output Area (LSOA), Super Output Area (SOA) in Northern Ireland and datazone (DZ) in Scotland. The latest available patient postcode of residence is mapped to an LSOA boundary. The LSOA of residence then allows linkage to the following LSOA-level deprivation measures: 2004 English Index of Multiple Deprivation; 2007 English Index of Multiple Deprivation; 2010 English Index of Multiple Deprivation; 2015 English Index of Multiple Deprivation (composite and individual domains); Townsend Deprivation Index: calculated using unadjusted 2001 census data; Carstairs Index using 2011 census data.
Data are provided as quintiles, deciles or twentiles of the deprivation score to prevent disclosure of patient location. In order to prevent the possibility of deductive disclosure of a patients’ area of residence, researchers will only be provided with one of the above linked datasets for any one study.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 1993 to 2023 for Townsend K-12 Schools School District vs. Montana
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 2007 to 2023 for Townsend Harris High School vs. New York and New York City Geographic District #25 School District
These deprivation scores are based on those created by Townsend, Morris, Carstairs, Jarman and the Department of the Environment (DoE).
Calculating measures of deprivation is perhaps one of the commonest uses of census data. Data on, for example, housing, employment, social class and availability of cars are used to create a single measure of area deprivation. There are various measures of deprivation that use different census variables or give different weights to the same variables.
In addition, the Deprivation data webpage at UK Data Service Census Support provides more information and links to related measures available elsewhere.
These data are restricted to staff and students from UK further/higher education institutions. If your intended use of the data involves partnership with or funding from any non-academic organisations or individuals, or if you are uncertain about whether your use of the data is entirely academic, please Get in touch.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWest Virginia’s (WV) suicide rate is 50% higher than the national average and is the highest in the Appalachian Region. Appalachia has several social factors that have contributed to greater socioeconomic deprivation, a known contributor of suicide. Given WV’s high prevalence of suicide and poverty, the current study aims to examine the relationship between socioeconomic deprivation and suicide rates in WV.MethodsThe Townsend Deprivation Index (TDI), Social Deprivation Index (SDI), and Social Vulnerability Index (SVI) measured socioeconomic deprivation. Negative binomial regression models assessed the relationship between socioeconomic deprivation scores, individual index items, and suicide rates. Model comparisons evaluated the indices’ ability to assess suicide rates. A backward selection strategy identified additional key items for examining suicide rates.ResultsThere was a significant increase in suicide rates for every 10% increase in TDI (β = 0.04; p < 0.01), SDI (β = 0.03; p = 0.04), and SVI scores (β = 0.05; p < 0.01). Household overcrowding and unemployment had a positive linear relationship with suicide in TDI (β = 0.04, p = 0.02; β = 0.07, p = 0.01), SDI (β = 0.10, p = 0.02; β = 0.01, p
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 1991 to 2023 for Townsend Elementary School vs. Tennessee and Blount County School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Descriptive statistics of county suicide, index scores, and index items.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Individual index items: Negative binomial regression results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 2002 to 2023 for Ocean vs. Washington and Port Townsend School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The first resource below provides a list of all 2011 census frozen postcodes across the UK as well as the:
Suppressed postcodes in Northern Ireland
For confidentiality reasons, counts were suppressed for postcodes that had less than 10 usual residents and had only 1, 2 or 3 households in them.
The Registrar General took steps to ensure that the confidentiality of respondents was fully protected. Accordingly, all published results from the 2011 Census (including those relating to Postcodes) were subject to statistical processes to ensure that individuals could not be identified. For these postcodes, averages were taken at Postcode District level and released in a separate table, which can be found below.
Missing postcodes
These postcodes are based upon the sets of enumeration postcodes provided by the three UK census agencies. Enumeration postcodes are a subset of the complete set of live postcodes at the time of the 2011 Census. These are aggregated to create census output areas, which are themselves aggregated to create most other census geographies.
Only postcodes with at least one resident person are included. Many postcodes, such as those assigned to businesses, don't have any resident populations and so won't appear in the table.
Postcodes are quite volatile; new postcodes are created and old ones are terminated regularly. Existing/live postcodes can also change through the addition or removal of delivery points. The ONSPD records all live and terminated postcodes. Each postcode has a date of introduction and, if relevant, a date of termination. Things are complicated further because postcodes can be re-used, so a postcode can be terminated and then reappear with a new date of introduction, replacing/removing the record for the previous instance of the postcode. Postcodes that weren't current at the time of the census also won't appear in the table.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 1993 to 2023 for Townsend Elementary School vs. Missouri and Hazelwood School District
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 1994 to 2006 for Townsend Kindergarten vs. Tennessee and Franklin County School District
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Beta image for Townsend score
This collection contains the group-level results for model 2 described in the paper `BLMM: Parallelised Computing for Big Linear Mixed Models'. This analysis used 4922 images from the faces vs shapes task in the UK Biobank dataset and was run using BLM on 26/10/22.
homo sapiens
fMRI-BOLD
group
Other evaluation task
U
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual diversity score from 2013 to 2023 for Townsend Community School vs. Ohio and Townsend Community School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Townsend Deprivation Index is a measure of material deprivation first introduced by Peter Townsend in 1987. A Townsend score can be calculated using a combination of four census variables for any geographical area (provided census data is available for that area). The measure has been widely used in research for health, education and crime to establish whether relationships exist with deprivation. The Townsend scores below were calculated for the UK based on data from the 2011 Census and include a discussion with geographical visualisations of the findings.