11 datasets found
  1. o

    TPC-H lineitem SF100 Parquet data set

    • explore.openaire.eu
    Updated Jan 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannes Mühleisen (2022). TPC-H lineitem SF100 Parquet data set [Dataset]. http://doi.org/10.25606/surf.04ef48d962339fa4
    Explore at:
    Dataset updated
    Jan 1, 2022
    Authors
    Hannes Mühleisen
    Description

    The lineitem table of the TPC-H benchmark's SF100 data set. Stored in Parquet files. Website: https://www.tpc.org/tpch/ Related publications: - TPC Benchmark H, Standard Specification Revision 2.17.2, 2017. https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.2.pdf - Meikel Poess: TPC-H. Encyclopedia of Big Data Technologies, 2019. https://link.springer.com/referenceworkentry/10.1007/978-3-319-63962-8_126-1

  2. Nested TPC-H columns as JSON (scale factor 10)

    • zenodo.org
    application/gzip
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mateusz Gienieczko; Mateusz Gienieczko (2025). Nested TPC-H columns as JSON (scale factor 10) [Dataset]. http://doi.org/10.5281/zenodo.15292275
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mateusz Gienieczko; Mateusz Gienieczko
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TPC-H data (scale factor 10), Customers joined with Orders joined with Lineitems, translated into JSON with the following structure:

    Array of Customer with nested `c_orders` which is an array of Orders, each order with nested `o_lineitems` which is an array of Lineitems.

  3. h

    tpc-h

    • huggingface.co
    Updated Mar 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mrzzy (2025). tpc-h [Dataset]. https://huggingface.co/datasets/mrzzy/tpc-h
    Explore at:
    Dataset updated
    Mar 30, 2025
    Authors
    mrzzy
    Description

    mrzzy/tpc-h dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. h

    tpch_tables_scale_1

    • huggingface.co
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kunishou (2024). tpch_tables_scale_1 [Dataset]. https://huggingface.co/datasets/kunishou/tpch_tables_scale_1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 4, 2024
    Authors
    kunishou
    Description

    polars-tpch

    This repo contains the code used for performance evaluation of polars. The benchmarks are TPC-standardised queries and data designed to test the performance of "real" workflows. From the TPC website:

    TPC-H is a decision support benchmark. It consists of a suite of business-oriented ad hoc queries and concurrent data modifications. The queries and the data populating the database have been chosen to have broad industry-wide relevance. This benchmark illustrates decision… See the full description on the dataset page: https://huggingface.co/datasets/kunishou/tpch_tables_scale_1.

  5. TPC-H-scalar and Microbenchmarks with scalar functions

    • figshare.com
    txt
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    anonymous anonymous (2025). TPC-H-scalar and Microbenchmarks with scalar functions [Dataset]. http://doi.org/10.6084/m9.figshare.29452214.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    anonymous anonymous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TPC-H-scalar and Microbenchmark queries with scalar functions

  6. H

    Data from: MyBenchmark: generating databases for query workloads

    • dataverse.harvard.edu
    Updated Nov 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wilfred W.K. Lin (2021). MyBenchmark: generating databases for query workloads [Dataset]. http://doi.org/10.7910/DVN/ISQYCH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 4, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Wilfred W.K. Lin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    To evaluate the performance of database applications and database management systems (DBMSs), we usually execute workloads of queries on generated databases of different sizes and then benchmark various measures such as respond time and throughput. This paper introduces MyBenchmark, a parallel data generation tool that takes a set of queries as input and generates database instances. Users of MyBenchmark can control the characteristics of the generated data as well as the characteristics of the resultingworkload. Applications of MyBenchmark includeDBMS testing, database application testing, and application-driven benchmarking. In this paper, we present the architecture and the implementation algorithms of MyBenchmark. Experimental results show that MyBenchmark is able to generate workload-aware databases for a variety of workloads including query workloads extracted from TPC-C, TPC-E, TPC-H, and TPC-W benchmarks.

  7. Z

    CC20 Artifact - Automatic Fusion

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Krolik (2020). CC20 Artifact - Automatic Fusion [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3608382
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Clark Verbrugge
    Hanfeng Chen
    Alexander Krolik
    Bettina Kemme
    Laurie Hendren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Getting started

    The title of our paper submitted to CC20 is

    Improving Database Query Performance with Automatic Fusion

    This repository is created for showing the reproducibility of our experiments in this paper. We provide the details of scripts and original data used in the experiments. There are mainly two systems: HorsePower and RDBMS MonetDB. We supply step-by-step instructions to configure and deploy both systems in the experiments.

    On this page, you will see:

    how to run experiments (Section 2); and

    the results used in the paper (Section 3);

    1. Experiments

    All experiments were run on a server called sable-intel equipped with

    Ubuntu 16.04.6 LTS (64-bit)

    4 Intel Xeon E7-4850 2.00 GHz

    total 40 cores with 80 threads

    128GB RAM

    Docker setup

    Download the docker image: cc20-docker.tar (About 13GB)

    docker load < cc20-docker.tar

    Generate a named container (then exit)

    docker run --hostname sableintel -it --name=container-cc20 wukefe/cc20-docker exit

    Then, you can run the container

    docker start -ai container-cc20

    Open a new terminal to access the container (optional)

    docker exec -it container-cc20 /bin/bash

    Introduction to MonetDB

    Work directory for MonetDB

    /home/hanfeng/cc20/monetdb

    Start MonetDB (use all available threads)

    ./run.sh start

    Login MonetDB using its client tool, mclient

    mclient -d tpch1

    ... MonetDB version v11.33.3 (Apr2019)

    sql> SELECT 'Hello world'; +-------------+ | L2 | +=============+ | Hello world | +-------------+ 1 tuple

    Show the list of tables in the current database

    sql> \d TABLE sys.customer TABLE sys.lineitem TABLE sys.nation TABLE sys.orders TABLE sys.part TABLE sys.partsupp TABLE sys.region TABLE sys.supplier

    Leave the session

    sql> \q

    Stop MonetDB before we can continue our experiments

    ./run.sh stop

    Reference: How to install MonetDB and the introduction of server and client programs.

    Run MonetDB with TPC-H queries

    MonetDB: server mode

    Invoke MonetDB with a specific number of threads (e.g. 1)

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=1

    Open a new terminal

    docker exec -it container-cc20 /bin/bash cd cc20/monetdb

    Note: Type \q to exit the server mode.

    Run with a specific number of threads (Two terminals required)

    1 thread

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=1

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_1.log"

    2 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=2

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_2.log"

    4 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=4

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_4.log"

    8 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=8

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_8.log"

    16 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=16

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_16.log"

    32 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=32

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_32.log"

    64 threads

    terminal 1

    mserver5 --set embedded_py=true --dbpath=/home/hanfeng/datafarm/2019/tpch1 --set monet_vault_key=/home/hanfeng/datafarm/2019/tpch1/.vaultkey --set gdk_nr_threads=64

    terminal 2

    (time ./runtest | mclient -d tpch1) &> "log/log_thread_64.log"

    Post data processing - MonetDB

    Fetch average execution time (ms)

    grep -A 3 avg_query log/log_thread_1.log | python cut.py

    699.834133333 // q1 85.9178666667 // q4 65.0172 // q6 101.730666667 // q12 58.212 // q14 60.1138666667 // q16 248.926466667 // q19 77.6482 // q22

    grep -A 3 avg_query log/log_thread_2.log | python cut.py grep -A 3 avg_query log/log_thread_4.log | python cut.py grep -A 3 avg_query log/log_thread_8.log | python cut.py grep -A 3 avg_query log/log_thread_16.log | python cut.py grep -A 3 avg_query log/log_thread_32.log | python cut.py grep -A 3 avg_query log/log_thread_64.log | python cut.py

    Note: The above numbers can be copied to an Excel file for further analysis before plotting figures. Details can be found in Section 3.

    Run with HorseIR

    The HorsePower project can be found on GitHub. In the docker image, it has been placed in /home/hanfeng/cc20/horse.

    https://github.com/Sable/HorsePower

    Execution time

    We then run each query 15 times to get the average execution time (ms).

    (cd /home/hanfeng/cc20/horse/ && time ./run_all.sh)

    The script run_all.sh runs over three versions of generated C code based on different levels of optimizations.

    • naive : no optimization
    • opt1 : with optimizations
    • opt2 : with automatic fusion

    In each version, it first compiles its C code and runs the generated binary with a different number of threads (i.e. 1/2/4/8/16/32/64). Each run computes a query 15 times and returns the average.

    As a result, all output is saved into a log file, for example, log/naive/log_q6.log contains the result of query 6 in the naive version with all different number of threads.

    Log file structures

    log/naive/*.txt log/opt1/*.txt log/opt2/*.txt

    Fetch a brief summary of execution time from a log file

    cat log/naive/log_q6.txt | grep -E 'Run with 15 times'

    q06>> Run with 15 times, last 15 average (ms): 266.638 | 278.999 266.134 266.417 <12 more> # 1 thread q06>> Run with 15 times, last 15 average (ms): 138.556 | 144.474 137.837 137.579 <12 more> # 2 threads q06>> Run with 15 times, last 15 average (ms): 71.8851 | 75.339 72.102 72.341 <12 more> # 4 threads q06>> Run with 15 times, last 15 average (ms): 73.111 | 75.867 72.53 72.936 <12 more> # 8 threads q06>> Run with 15 times, last 15 average (ms): 56.1003 | 59.263 56.057 56.039 <12 more> # 16 threads q06>> Run with 15 times, last 15 average (ms): 56.8858 | 59.466 56.651 57.109 <12 more> # 32 threads q06>> Run with 15 times, last 15 average (ms): 53.4254 | 55.884 54.457 52.878 <12 more> # 64 threads

    It may become verbose when you have to extract information for all queries over three different kinds of versions. We provide a simple solution for it.

    ./run.sh fetch log | python gen_for_copy.py

    Output data in the following format

    // query id

    | naive | opt1 | opt2 |

    | ... | ... | ... | # 1 thread | ... | ... | ... | # 2 threads ... ... ... | ... | ... | ... | # 64 threads

    Note that we copy the generated numbers into an Excel described in Section 3. Within an Excel file, we compare the performance difference in MonetDB and different versions of the generated C code.

    Compilation time

    Work directory

    /home/hanfeng/cc20/horse/codegen

    Fetch compilation time for different kinds of C code

    ./run.sh compile naive &> log_cc20_compile_naive.txt ./run.sh compile opt1 &> log_cc20_compile_opt1.txt ./run.sh compile opt2 &> log_cc20_compile_opt2.txt

    Let's look into the result of query 1 in the log file log_cc20_compile_naive.txt.

    Time variable usr sys wall GGC phase setup : 0.00 ( 0%) 0.00 ( 0%) 0.01 ( 5%) 1266 kB ( 18%) phase parsing : 0.07 ( 54%) 0.07 ( 88%) 0.14 ( 64%) 3897 kB ( 55%) phase opt and generate : 0.06 ( 46%) 0.01 ( 12%) 0.07 ( 32%) 1899 kB ( 27%) dump files : 0.00 ( 0%) 0.00 ( 0%) 0.02 ( 9%) 0 kB ( 0%) df reg dead/unused notes : 0.01 ( 8%) 0.00 ( 0%) 0.00 ( 0%) 31 kB ( 0%) register information : 0.00 ( 0%) 0.00 ( 0%) 0.01 ( 5%) 0 kB ( 0%) preprocessing : 0.03 ( 23%) 0.02 ( 25%) 0.08 ( 36%) 1468 kB ( 21%) lexical analysis : 0.00 ( 0%) 0.03 ( 38%) 0.05 ( 23%) 0 kB ( 0%) parser (global) : 0.04 ( 31%) 0.02 ( 25%) 0.01 ( 5%) 2039 kB ( 29%) tree SSA other : 0.00 ( 0%) 0.01 ( 12%) 0.00 ( 0%) 3 kB ( 0%) integrated RA : 0.01 ( 8%) 0.00 ( 0%) 0.01 ( 5%) 726 kB ( 10%) thread pro- & epilogue : 0.02 ( 15%) 0.00 ( 0%) 0.00 ( 0%) 41 kB ( 1%) shorten branches : 0.00 ( 0%) 0.00 ( 0%) 0.01 ( 5%) 0 kB ( 0%) final : 0.00 ( 0%) 0.00 ( 0%) 0.01 ( 5%) 56 kB ( 1%) initialize rtl : 0.01 ( 8%) 0.00 ( 0%) 0.01 ( 5%) 12 kB ( 0%) rest of compilation : 0.01 ( 8%) 0.00 ( 0%) 0.00 ( 0%) 62 kB ( 1%) TOTAL : 0.13 0.08 0.22 7072 kB

    The whole compilation time is split into many parts. We take the total wall time as the actual time spent on the code compilation. In this query, it needs 0.22 seconds to complete the whole compilation. (Note that manual work is required for retrieving the compilation time.)

    3.

  8. Data from: Group 10 Metal Complexes Supported by Pincer Ligands with an...

    • acs.figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brittany J. Barrett; Vlad M. Iluc (2023). Group 10 Metal Complexes Supported by Pincer Ligands with an Olefinic Backbone [Dataset]. http://doi.org/10.1021/om500256r.s002
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Brittany J. Barrett; Vlad M. Iluc
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The coordination chemistry of 2,2′-bis(di-iso-propylphosphino)-trans-stilbene (tPCHCHP) with group 10 metal centers in a variety of oxidation states is reported; different coordination modes were observed depending on the oxidation state of the metal. With metal centers in the 0 or +1 oxidation state ((tPCHCHP)Ni, [(tPCHCHP)Pd]2, (tPCHCHP)NiCl, (tPCHCHP)NiI), η2 coordination of the olefin occurs, whereas, with metals in the +2 oxidation state, C–H activation of the backbone, followed by rapid H–X reductive elimination, was observed, leading to an η1 coordination of the backbone in (tPCCHP)MCl (M = Ni, Pd, Pt). Employing the methyl-substituted analogue, 2,2′-bis(di-iso-propylphosphino)-trans-diphenyl-1,2-dimethylethene (tPCMeCMeP), forced an η2 coordination of the olefin in [(tPCMeCMeP)NiCl]2[NiCl4]. The synthesis of the hydride complex (tPCCHP)NiH was attempted, but, instead, led to the formation of (tPCHCHP)Ni, indicating that the vinyl form of the backbone can function as a hydrogen acceptor. All metal complexes were characterized by multinuclei NMR spectroscopy, X-ray crystallography, and elemental analysis.

  9. f

    Data from: Electronic Structure of Iron Chlorins: Characterization of...

    • acs.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gérard Simonneaux; Marwan Kobeissi; Loîc Toupet (2023). Electronic Structure of Iron Chlorins:  Characterization of Bis(l-valine methyl ester)(meso-tetraphenylchlorin)iron(III)triflate and Bis(l-valine methyl ester)(meso-tetraphenylchlorin)iron(II) [Dataset]. http://doi.org/10.1021/ic026039h.s002
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    ACS Publications
    Authors
    Gérard Simonneaux; Marwan Kobeissi; Loîc Toupet
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The synthesis and characterization of the two iron chlorin complexes [FeIII(TPC)(NH2CH(CO2CH3)(CH(CH3)2))2]CF3SO3 (1) and FeII(TPC)[(NH2CH(CO2CH3)(CH(CH3)2)]2 (2) are reported. The crystal structure of complex 1 has been determined. The X-ray structure shows that the porphyrinate rings are weakly distorted. The metal−nitrogen distances to the reduced pyrrole N(4), 2.034(4) Å, and to the pyrrole trans to it N(2), 2.012(4) Å, are longer than the distances to the two remaining nitrogens [N(1), 1.996(4) Å, and N(3), 1.984(4) Å], leading to a core−hole expansion of the macrocycle due to the reduced pyrrole. The 1H NMR isotropic shifts at 20 °C of the different pyrrole protons of 1 varied from −0.8 to −48.3 ppm according to bis-ligated complexes of low-spin ferric chlorins. The EPR spectrum of [Fe(TPC)(NH2CH(CO2CH3)(CH(CH3)2))2]CF3SO3 (1) in solution is rhombic and gives the principal g values g1 = 2.70, g2 = 2.33, and g3 = 1.61 (∑g2 = 15.3). These spectroscopic observations are indicative of a metal-based electron in the dπ orbital for the [Fe(TPC)(NH2CH(CO2CH3)(CH(CH3)2))2]CF3SO3 (1) complex with a (dxy)2(dxzdyz)3 ground state at any temperature. The X-ray structure of the ferrous complex 2 also shows that the porphyrinate rings are weakly distorted. The metal−nitrogen distances to the reduced pyrrole N(4), 1.991(5) Å, and to the pyrrole trans to it N(2), 2.005(6) Å, are slightly different from the distances to the two remaining nitrogens [N(1), 1.988(5) Å, and N(3), 2.015(5) Å], leading to a core−hole expansion of the macrocycle due to the reduced pyrrole.

  10. f

    Proton assignment in 1H-NMR [47,48].

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinay Kumar; Rajan Choudhary; Ankush Kumar (2023). Proton assignment in 1H-NMR [47,48]. [Dataset]. http://doi.org/10.1371/journal.pone.0256030.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Abhinay Kumar; Rajan Choudhary; Ankush Kumar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Proton assignment in 1H-NMR [47,48].

  11. f

    Data.

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinay Kumar; Rajan Choudhary; Ankush Kumar (2023). Data. [Dataset]. http://doi.org/10.1371/journal.pone.0256030.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Abhinay Kumar; Rajan Choudhary; Ankush Kumar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file includes all the test data of the asphalt binders used in this study. (XLSX)

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hannes Mühleisen (2022). TPC-H lineitem SF100 Parquet data set [Dataset]. http://doi.org/10.25606/surf.04ef48d962339fa4

TPC-H lineitem SF100 Parquet data set

Explore at:
25 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 1, 2022
Authors
Hannes Mühleisen
Description

The lineitem table of the TPC-H benchmark's SF100 data set. Stored in Parquet files. Website: https://www.tpc.org/tpch/ Related publications: - TPC Benchmark H, Standard Specification Revision 2.17.2, 2017. https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.2.pdf - Meikel Poess: TPC-H. Encyclopedia of Big Data Technologies, 2019. https://link.springer.com/referenceworkentry/10.1007/978-3-319-63962-8_126-1

Search
Clear search
Close search
Google apps
Main menu