This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vehicle travel time and delay data on sections of road in Hamilton City, based on Bluetooth sensor records. To get data for this dataset, please call the API directly talking to the HCC Data Warehouse: https://api.hcc.govt.nz/OpenData/get_traffic_link_stats?Page=1&Start_Date=2021-06-02&End_Date=2021-06-03. For this API, there are three mandatory parameters: Page, Start_Date, End_Date. Sample values for these parameters are in the link above. When calling the API for the first time, please always start with Page 1. Then from the returned JSON, you can see more information such as the total page count and page size. For help on using the API in your preferred data analysis software, please contact dale.townsend@hcc.govt.nz. NOTE: Anomalies and missing data may be present in the dataset. Column_InfoLink_Id, int : Unique link identifierTravel_Time, int : Average travel time in seconds to travel along the linkAverage_Delay, int : Average travel delay in seconds, calculated as the difference between the free flow travel time and observed travel timeDate, varchar : Starting date and time for the recorded delay and travel time, in 15 minute periods Relationship This table reference to table Traffic_Link Analytics For convenience Hamilton City Council has also built a Quick Analytics Dashboard over this dataset that you can access here. Disclaimer Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works. Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data. While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data: ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Traffic and road condition information captured in the QLDTraffic system is available for use by external developers via GeoJSON feeds.
These feeds cover Hazards, Crashes, Congestion, Flooding, Roadworks and Special Events and Web Cameras details.
The information provided in these feeds is on an 'as is' basis. Additional details about the available information on the QLDTraffic site can be viewed on our disclaimer page .
Transport and Main Roads (TMR) is constantly striving to ensure that they provide accurate, reliable and timely traffic and road condition information.
Given this, the previously available API has undergone changes in August 2016 with the creation of the QLDTraffic public website.
Details on accessing QLDTraffic’s traffic and road condition information via GeoJSON can be found in the QLDTraffic website application programming interface (API) specification.
This API has been developed to allow improved integration of QLDTraffic traffic and road condition information with external systems.
Please be aware that this specification may be subject to change.
TRIMARC (Traffic Response and Incident Management Assisting the River City) camera locations in Louisville Metro Kentucky. This feature layer was created from a TRIMARC JSON files of camera locations. This item includes description, direction, and videos links and is used in the Louisville Metro Snow Map. The cameras are used to monitor the roadways and verify incidents to assist in freeway and incident management This feature is a static extract and will be reviewed before each snow season for updates. For more information on this feature layer and it's use please contact Louisville Metro GIS or LOJIC. To learn more about TRIMARC please visit the following website http://www.trimarc.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access an API version of this dataset.
TMS
(traffic monitoring system) daily-updated traffic counts API
Important note: due to the size of this dataset, you won't be able to open it fully in Excel. Use notepad / R / any software package which can open more than a million rows.
Data reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recorded volume data at SCATS intersections or pedestrian crossings in Hamilton. To get data for this dataset, please call the API directly talking to the HCC Data Warehouse: https://api.hcc.govt.nz/OpenData/get_traffic_signal_detector_count?Page=1&Start_Date=2020-10-01&End_Date=2020-10-02. For this API, there are three mandatory parameters: Page, Start_Date, End_Date. Sample values for these parameters are in the link above. When calling the API for the first time, please always start with Page 1. Then from the returned JSON, you can see more information such as the total page count and page size. For help on using the API in your preferred data analysis software, please contact dale.townsend@hcc.govt.nz. NOTE: Anomalies and missing data may be present in the dataset.
Column_InfoSite_Number, int : SCATS ID - Unique identifierDetector_Number, int : Detector number that the count is recorded toDate, datetime : Start of the 15 minute time interval that the count was recorded forCount, int : Number of vehicles that passed over the detector
Relationship
This table reference to table Traffic_Signal_Detector
Analytics
For convenience Hamilton City Council has also built a Quick Analytics Dashboard over this dataset that you can access here.
Disclaimer
Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Leeds City Council can provide you with free access to live car park availability across the city. To access live car parking space data please email traffic.signals@leeds.gov.uk requesting "Car Park API Access" in the first instance. Once approved, a login will be created providing access to the Datex 2 system. Please note Further information may be required from you to process the request. Leeds City Council does not control the Datex 2 system (and associated API), this is managed by another oranisation. Leeds City Council manage any new requests for access to the API. The API does not provide car parking space information for all council owned car parks. Additional information Check the Leeds Travel info website: http://www.leedstravel.info/
https://www.data.gov.uk/dataset/30086371-5577-4315-8e9e-e2993a420b60/tellmescotland-api#licence-infohttps://www.data.gov.uk/dataset/30086371-5577-4315-8e9e-e2993a420b60/tellmescotland-api#licence-info
Tell Me Scotland is a portal for accessing public information notices issued by local authorities across Scotland.
The site allows users to:
This service is supported by an API that allows REST queries returning data in JSON or XML format.
The API allows GET requests for notices in bulk, individually, by type (Planning, Traffic, General, Licensing and Councillor Surgeries) and also details and lists of organisations.
The API also allows POST request for upload of notices by authorised users and organisations.
In order to access the data via the API, a TellMeScotland account is required with REST read-only permissions and associated authorisations.
https://www.tellmescotland.gov.uk/api/docs (for authorised users) https://www.tellmescotland.gov.uk (main website)
To obtain a TellMeScotland account and associated authorisations, users should contact tellme@improvementservice.org.uk
It is also possible to register individually for notice alerts, or to view the website as an unregistered user, but this does not allow direct access to the API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Open Data Hub has numerous data relating to roads and speed, whether it be the Sydney Region Carriageway, the Tolls on our NSW roads, or the speed zones and speed camera locations.
Below you will find a full list of available data sets;
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.