Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites
Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates
Relationship
Disclaimer
Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. Historical traffic is based on the average of observed speeds over the past three years. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.
Retail platforms have undergone an unprecedented global traffic increase between January 2019 and June 2020, surpassing even holiday season traffic peaks. Overall, retail websites generated almost 22 billion visits in June 2020, up from 16.07 billion global visits in January 2020. This is of course due to the global coronavirus pandemic which has forced millions of people to stay at home in order to stop the spread of the virus. Due to many shelter at home orders and a desire to avoid crowded stores in places where it is possible to shop, consumers have turned to the internet to procure everyday items such as groceries or toilet paper.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Web Analytics Market Valuation – 2024-2031
Web Analytics Market was valued at USD 6.16 Billion in 2024 and is projected to reach USD 13.6 Billion by 2031, growing at a CAGR of 18.58% from 2024 to 2031.
Web Analytics Market Drivers
Data-Driven Decision Making: Businesses increasingly rely on data-driven insights to optimize their online strategies. Web analytics provides valuable data on website traffic, user behavior, and conversion rates, enabling data-driven decision-making.
E-commerce Growth: The rapid growth of e-commerce has fueled the demand for web analytics tools to track online sales, customer behavior, and marketing campaign effectiveness.
Mobile Dominance: The increasing use of mobile devices for internet browsing has made mobile analytics a crucial aspect of web analytics. Businesses need to understand how users interact with their websites and apps on mobile devices.
Web Analytics Market Restraints
Data Privacy and Security Concerns: As data privacy regulations become stricter, businesses must ensure that they collect and process user data ethically and securely.
Complex Web Analytics Tools: Some web analytics tools can be complex to implement and use, requiring technical expertise.
In January 2025 mobile devices excluding tablets accounted for over 62 percent of web page views worldwide. Meanwhile, over 75 percent of webpage views in Africa were generated via mobile. In contrast, just over half of web traffic in North America still took place via desktop connections with mobile only accounting for 51.1 percent of total web traffic. While regional infrastructure remains an important factor in broadband vs. mobile coverage, most of the world has had their eyes on the recent 5G rollout across the globe, spearheaded by tech-leaders China and the United States. The number of mobile 5G subscriptions worldwide is forecast to reach more than 8 billion by 2028. Social media: room for growth in Africa and southern Asia Overall, more than 92 percent of the world’s mobile internet subscribers are also active on social media. A fast-growing market, with newcomers such as TikTok taking the world by storm, marketers have been cashing in on social media’s reach. Overall, social media penetration is highest in Europe and America while in Africa and southern Asia, there is still room for growth. As of 2021, Facebook and Google-owned YouTube are the most popular social media platforms worldwide. Facebook and Instagram are most effective With nearly 3 billion users, it is no wonder that Facebook remains the social media avenue of choice for the majority of marketers across the world. Instagram, meanwhile, was the second most popular outlet. Both platforms are low-cost and support short-form content, known for its universal consumer appeal and answering to the most important benefits of using these kind of platforms for business and advertising purposes.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 3.07(USD Billion) |
MARKET SIZE 2024 | 3.51(USD Billion) |
MARKET SIZE 2032 | 10.2(USD Billion) |
SEGMENTS COVERED | Deployment Type ,Usage ,Industry Vertical ,Organization Size ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Rising demand for personalized customer experiences Growing adoption of digital marketing channels Increasing focus on data privacy and compliance Advancements in artificial intelligence and machine learning Emergence of new technologies such as headless CMS and serverside tagging |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Clicky ,Smartlook ,Google Analytics ,Crazy Egg ,Quantum Metric ,PIWIK PRO ,Woopra ,AT Internet ,Inspectlet ,Kissmetrics ,Mouseflow ,Matomo ,Hotjar ,Mixpanel ,SessionStack |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | AIpowered analytics Mobile optimization Integration with CRM systems Predictive analytics Realtime insights |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 14.27% (2025 - 2032) |
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
The size and share of the market is categorized based on Type (Web Traffic Analytics, Conversion Analytics, User Behavior Analytics, SEO Analytics) and Application (Website Optimization, Marketing Performance, User Experience, Sales Tracking) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Scientists are increasingly engaging the web to provide formal and informal science education opportunities. Despite the prolific growth of web-based resources, systematic evaluation and assessment of their efficacy remains limited. We used clickstream analytics, a widely available method for tracking website visitors and their behavior, to evaluate >60,000 visits over three years to an educational website focused on ecology. Visits originating from search engine queries were a small proportion of the traffic, suggesting the need to actively promote websites to drive visitation. However, the number of visits referred to the website per social media post varied depending on the social media platform and the quality of those visits (e.g., time on site and number of pages viewed) was significantly lower than visits originating from other referring websites. In particular, visitors referred to the website through targeted promotion (e.g., inclusion in a website listing classroom teaching resources) had higher quality visits. Once engaged in the site's core content, visitor retention was high; however, visitors rarely used the tutorial resources that serve to explain the site's use. Our results demonstrate that simple changes in website design, content and promotion are likely to increase the number of visitors and their engagement. While there is a growing emphasis on using the web to broaden the impacts of biological research, time and resources remain limited. Clickstream analytics provides an easily accessible, relatively fast and quantitative means by which those engaging in educational outreach can improve upon their efforts.
In the month of January 2024, the beauty and personal care retailer Nykaa had about 9.87 million website visits. In comparison, the month of December in 2023 clocked over ten million monthly website visits.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Average Annual Daily Traffic data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain data on the total volume of vehicle traffic on a highway or road for a year divided by 365 days.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
pNEUMA is an open large-scale dataset of naturalistic trajectories of half a million vehicles that have been collected by a one-of-a-kind experiment by a swarm of drones in the congested downtown area of Athens, Greece. A unique observatory of traffic congestion, a scale an-order-of-magnitude higher than what was not available until now, that researchers from different disciplines around the globe can use to develop and test their own models.
How are the .csv files organized?
For more details about the pNEUMA dataset, please check our website at https://open-traffic.epfl.ch
The map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.ArcGIS Online organization subscriptionImportant Note:The World Traffic map service is available for users with an ArcGIS Online organizational subscription. To access this map service, you'll need to sign in with an account that is a member of an organizational subscription. If you don't have an organizational subscription, you can create a new account and then sign up for a 30-day trial of ArcGIS Online.
Attribution-NonCommercial 2.5 (CC BY-NC 2.5)https://creativecommons.org/licenses/by-nc/2.5/
License information was derived automatically
This dataset consists of 107 days of vessel tracking using the Automatic Identification System (AIS) at 1 hour intervals extracted for the Queensland region from the Spatial@AMSA Historic Vessel Tracking website (AMSA 2013). It has been converted to Shapefile format and contains just under 1 million points.
Note: The Spatial@AMSA Historic Vessel Tracking website is no longer available, however similar and more recent data is now available from Spatial@AMSA Vessel Tracking Data website (https://www.operations.amsa.gov.au/Spatial/DataServices/DigitalData).
Vessel tracking data is used to support coastal traffic management, search and rescue response and to meet requirements for safety and protection of the maritime environment. A valuable data set for marine use studies.
The Automatic Identification System (AIS) is an automatic tracking system used on ships and by vessel traffic services (VTS) for identifying and locating vessels by electronically exchanging data with other nearby ships, AIS base stations, and satellites. Each vessel regularly transmits its position ranging from 3 minutes for anchored or moored vessels, to 2 seconds for fast moving or manoeuvring vessels.
This dataset only contains vessel positions at approximately 1 hour internals. Even so each vessel can contribute many data points.
Class A transceivers have been mandated by the International Maritime Organization (IMO) for vessels of 300 gross tonnage and upwards engaged on international voyages, cargo ships of 500 gross tonnage and upwards not engaged on international voyages, as well as passenger ships (more than 12 passengers), irrespective of size. Class A transceivers are stronger, have priority transmissions and transmit more frequently then Class B transceivers.
Class B transceivers provide limited functionality and is intended for non-SOLAS vessels. It is not mandated by the International Maritime Organization (IMO) and has been developed for non-SOLAS commercial and recreational vessels.
The Historic Vessel Tracking Spatial@AMSA website provides a data download of historic vessel positions from April 2009 to current time minus 2 weeks.
The original data was downloaded through the Spatial@AMSA Historic Vessel Tracking Request website (https://www.operations.amsa.gov.au/Spatial/DataServices/CraftTrackingRequest). Due to limitations in the maximum size of the download, the data was requested in 3 day lots, using CSV download format and "Select by State" of QLD. All of the CSV files were compiled together using Notepad++, then loaded into ArcMap using Add Data / Add XY. This was then exported as a shapefile. This resulted in a very large shapefile as each of the columns were made excessively large (254 characters) by this process. To reduce the size of the shapefile a duplicate column was setup for each of the text attributes, except this time the size was set to just fit the data in. The data was copied to the new column using the field calculator and the original field deleted. This process reduced the database file of the shapefile from 1.4 GB to 170 MB.
Note that due to a limitation of the shapefile format the high resolution time stamps of vessels did not come out in the shapefile. This information is however available in the CSV version.
This dataset only contains information available from the Historic Vessel Tracking Spatial@AMSA website and only contains the ships course, speed, heading, ship name and if it is piloted. It does not contain information about the ship's length, breadth, cargo or status.
The eAtlas has not confirmed what types of vessels this dataset contains however it probably contains most AIS Class A and some Class B vessels.
Format:
This dataset is available in Comma Separated Value (CSV) (80 MB) and Shapefile format (178 MB).
Data Dictionary:
CSV file: Not a lot is known about the fields of this dataset as they come from AMSA undocumented. Values in brackets are typical values. - CourseDegrees: (0, 331.3, 184) - CraftType: (Vessel) - FixTime: (9/05/2013 21:13) - Heading: Heading of the vessel in integer degrees, sometime there is no value (284) - IsPilotedVoyage: Boolean (FALSE, TRUE) - Latitude, Longitude: Vessel position in decimal degrees (-23.75092333, 151.1676367) - Name: Vessel id (NOMADIC MILDE, SMIT KULLAROO, HYUNDAI SUCCESS) - ReportingAgentName: (AMSA, AIS) - Speed: unknown units (0, 13.2)
Shapefile: These are the same values as for the CSV but renamed to fit limitations of shapefiles: CouseDegr, Heading, Latitude, Longitude, Speed, NameB, IsPiloted, FixTimeB, Reporting.
References:
Australian Maritime Safety Authority. (2013) Historical Vessel Tracking. Spatial@AMSA, [CSV data file]. License: Creative Commons Attribution-Noncommercial 3.0 Australia. Available: https://www.operations.amsa.gov.au/Spatial/DataServices/CraftTrackingRequest. Accessed 6 September 2013
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.