Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.
Facebook
TwitterUnlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was created by a LoRaWAN sniffer and contains packets, which are thoroughly analyzed in the paper Exploring LoRaWAN Traffic: In-Depth Analysis of IoT Network Communications (not yet published). Data from the LoRaWAN sniffer was collected in four cities: Liege (Belgium), Graz (Austria), Vienna (Austria), and Brno (Czechia).
Gateway ID: b827ebafac000001
Gateway ID: b827ebafac000002
Gateway ID: b827ebafac000003
To open the pcap files, you need Wireshark with current support for LoRaTap and LoRaWAN protocols. This support will be available in the official 4.1.0 release. A working version for Windows is accessible in the automated build system.
The source data is available in the log.zip file, which contains the complete dataset obtained by the sniffer. A set of conversion tools for log processing is available on Github. The converted logs, available in Wireshark format, are stored in pcap.zip. For the LoRaWAN decoder, you can use the attached root and session keys. The processed outputs are stored in csv.zip, and graphical statistics are available in png.zip.
This data represents a unique, geographically identifiable selection from the full log, cleaned of any errors. The records from Brno include communication between the gateway and a node with known keys.
Test file :: 00_Test
Brno, Czech Republic :: 01_Brno
70b3d5cee0000042d494d49a7b4053302bdcf96f1defa65a00d85395c417540b8b2afad8930c82fcf7ea54bb421fea9bedd2cc497f63303edf5adf8eLiege, Belgium :: 02_Liege :: evaluated in the paper
Brno, Czech Republic :: 03_Brno_join
70b3d5cee0000042d494d49a7b4053302bdcf96f1defa65a01e65ddce2898779a03de59e2317b149abf0023859ca1ac91922887093bc7b236bd1b07fGraz, Austria :: 04_Graz :: evaluated in the paper
Vienna, Austria :: 05_Wien :: evaluated in the paper
Brno, Czech Republic :: 07_Brno :: evaluated in the paper
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
Facebook
TwitterDaily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Facebook
TwitterMalware Traffic Analysis Knowledge Dataset 2019 (MTA-KDD'19) is an updated and refined dataset specifically tailored to train and evaluate machine learning based malware traffic analysis algorithms. To generate it, that authors started from the largest databases of network traffic captures available online, deriving a dataset with a set of widely-applicable features and then cleaning and preprocessing it to remove noise, handle missing data and keep its size as small as possible. The resulting dataset is not biased by any specific application (although specifically addressed to machine learning algorithms), and the entire process can run automatically to keep it updated.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Passenger Flow Statistics Analysis market is poised for significant expansion, projected to reach an estimated $5,000 million by 2025, with a robust Compound Annual Growth Rate (CAGR) of 18% anticipated through 2033. This growth is primarily fueled by the increasing need for retailers and service providers to understand customer behavior, optimize store layouts, and enhance operational efficiency. The "Restaurant" segment is expected to lead the market, driven by the high foot traffic and the critical importance of managing customer queues, table turnover, and staff allocation. Similarly, the "Shop" segment will see substantial adoption as businesses leverage data to personalize customer experiences, manage inventory effectively, and improve in-store marketing strategies. The "Others" segment, encompassing venues like entertainment centers, transportation hubs, and public facilities, will also contribute to market growth as they increasingly adopt these analytical solutions for safety, crowd management, and resource planning. The market is characterized by two dominant types of analysis: "Online Analysis" and "Offline Analysis." Online analysis leverages real-time data from sensors and cameras to provide immediate insights into traffic patterns, while offline analysis focuses on historical data for strategic planning and trend identification. The key drivers for this market include the escalating demand for data-driven decision-making in retail and service industries, the growing adoption of AI and machine learning for advanced analytics, and the continuous technological advancements in sensor technology and video analytics. However, concerns regarding data privacy and security, coupled with the high initial investment costs for sophisticated systems, represent significant restraints. The competitive landscape features prominent players such as TUPUTECH, Suzhou Wandianzhang Network Technology Co.,Ltd., SUNPN, Tuya Developer, Sensormatic, WUHAN EASYLINKIN TECHNOLOGY CO.,LTD, SUNIQUE, and Linsps, all actively innovating to capture market share. Geographically, Asia Pacific, particularly China and India, is emerging as a high-growth region due to rapid urbanization, increasing consumer spending, and a burgeoning retail sector. This report delves into the intricate world of passenger flow statistics analysis, offering an in-depth examination of market dynamics, trends, and future projections. Spanning a comprehensive study period from 2019 to 2033, with a base year of 2025, this analysis leverages historical data from 2019-2024 and forecasts crucial insights for the period 2025-2033. We will explore the key players, technological advancements, and regulatory landscapes shaping this vital industry. The report aims to provide stakeholders with actionable intelligence to navigate and capitalize on opportunities within the passenger flow analytics domain.
Facebook
TwitterWeb traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
Facebook
TwitterRepresentative applications that can directly collect 5G da-tasets from mobile terminals without using specialized equipment include G-NetTrack Pro and PCAPdroid. The for-mer allows for the monitoring and logging of the header and payload information of the medium access control (MAC) frame passing through the 5G air interface. The latter is an open-source network capture and monitoring tool that works without root privileges, analyzing connections made by ap-plications installed on the user's mobile device. The latter can also dump mobile traffic to PCAP (also known as libpcap) and send it to the well-known Wireshark for further analysis. We created 5G datasets by measuring 5G traffic directly from a major mobile operator in South Korea. The model name of the mobile terminal used for traffic measurement is the Samsung Galaxy A90 5G, and it was equipped with a Qualcomm Snapdragon X50 5G modem. The packet sniffer software used for traffic measurement, PCAPdroid, was in-stalled in the terminal through Google play. Traffic was measured sequentially per application on two stationary ter-minals (only one terminal was used for non-interactive ser-vices) with no background traffic. The collected dataset is representative resource-intensive video traffic that has the greatest impact on 5G network planning and provisioning, and background traffic was not mixed to measure the unique characteristics of each type of traffic. The video streaming dataset includes data directly meas-ured while watching Netflix and Amazon Prime, which are representative over-the-top (OTT) services, on mobile devic-es. The live streaming dataset was measured while watching YouTube Live and South Korea's representative live broad-casts (Naver NOW and Afreeca TV). Video conferencing data were measured by holding an actual meeting on the widely used Zoom, MS Teams, and Google Meet platform. Two types of metaverse traffic were acquired: Zepeto and Roblox. Zepeto traffic was collected while staying in the 'camping world' for 15 hours. Roblox traffic was collected over 25 hours of playing the 'Collect All Pets' game using an auto clicker. We collected two types of mobile network gaming traffic. The first was cloud gaming, an online game setup that runs video games on remote servers and streams them direct-ly to the user's device. The second was a traditional mobile game connected to the Internet. The dataset was collected from May to October 2022, is a massive 328 hours in total, and is provided in the csv file format. The dataset we collected is a timestamp-mapped time series dataset with packet header information, and traffic analysis by application is possible because it includes source and destination addresses. To make it more usable as a traffic source model, Section III describes how to use it as a training dataset for the traffic simulator platform's source generator.
A 5G traffic dataset measured by PCAPdroid has been re-leased and can be used as a training dataset for various ML models. However, since the size of this dataset is very large, it is inconvenient to handle, and additional data preprocessing is required to use it for its intended purpose.
This data set can be used to learn GANs, time-series forcasting deep learning models.
Our implementation is given on GitHub. https://github.com/0913ktg/5G-Traffic-Generator
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.
Facebook
TwitterDisplays traffic study flow count data maintained by Seattle Department of Transportation.Users can utilize following definition query for traffic count study data for a particular year. Note-ENTER YEAR is the particular year of interest.Definition Query: STDY_YEAR=ENTER YEAR AND FLOWMAP = 'Y'Refresh: Weekly
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
In today's digital landscape, the Website Traffic Analysis Tool market has emerged as an essential component for businesses aiming to enhance their online presence and optimize their digital strategies. These tools empower organizations to monitor their website performance, analyze visitor behavior, and derive actio
Facebook
TwitterAt Echo, our dedication to data curation is unmatched; we focus on providing our clients with an in-depth picture of a physical location based on activity in and around a point of interest over time. Our dataset empowers you to explore the “what” by allowing you to dig deeper into customer movement behaviors, eliminate gaps in your trade area and discover untapped potential. Leverage Echo's Activity datasets to identify new growth opportunities and gain a competitive advantage.
This sample of our Area Activity data provides you insights into the estimated total unique visitors and visits in an area. This helps you understand frequentation dynamics over time, identify emerging trends in people movements and measure the impact of external factors on how people move across a city.
Additional Information: - Understand the actual movement patterns of consumers without using PII data, gaining a 360-degree consumer view. Complement your online behavior knowledge with actual offline actions, and better attribute intent based on real-world behaviors. - Echo collects, cleans and updates its footfall on a daily basis. Normalization of the data occurs on a monthly basis. - We provide data aggregation on a weekly, monthly and quarterly basis. - Information about our country offering and data schema can be found here:
1) Data Schema: https://docs.echo-analytics.com/activity/data-schema
2) Country Availability: https://docs.echo-analytics.com/activity/country-coverage
3) Methodology: https://docs.echo-analytics.com/activity/methodology
Echo's commitment to customer service is evident in our exceptional data quality and dedicated team, providing 360° support throughout your location intelligence journey. We handle the complex tasks to deliver analysis-ready datasets to you.
Business Needs: 1. Site Selection: Leverage footfall data to identify the best location to open a new store. By analyzing areas with high footfall you can select sites that are likely to attract more customers. 2. Urban Planning Development: City planners can use footfall data to optimize the layout and infrastructure of urban areas, guide the development of commercial areas by indicating where pedestrian traffic is heaviest, and aid in traffic management and safety measures. 3. Real Estate Investment: Leverage footfall data to identify lucrative investment opportunities and optimize property management by analyzing pedestrian traffic patterns.
Facebook
TwitterComprehensive dataset analyzing Walmart.com's daily website traffic, including 16.7 million daily visits, device distribution, geographic patterns, and competitive benchmarking data.
Facebook
TwitterTraffic Analysis Zones layer for use in ArcGIS online and the open data hub.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In source data folder, we provide the source data of figures in manuscript. In Supplementary Data folder, we provide the explanatory document about the dataset, along with some dataset segments of SIND dataset. In addition, we have provided a MATLAB version of the AD4CHE visualization program and a Python version of the SIND visualization program. The usage of the visualization program is attached in the respective folder. Recorded scenarios include the input and output data of the Field test. Original traffic law includes the original traffic laws and the subdivided version.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global retail people counting market, valued at $1556 million in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 8.7% from 2025 to 2033. This expansion is driven by several key factors. The increasing adoption of data-driven decision-making in retail operations is a major catalyst, as retailers seek to optimize store layouts, staffing levels, and marketing campaigns based on real-time customer traffic insights. Furthermore, advancements in technology, such as the development of more accurate and cost-effective people counting systems (including video analytics, Wi-Fi analytics, and sensor-based solutions), are fueling market growth. The rise of omnichannel retail strategies, requiring seamless integration of online and offline experiences, necessitates sophisticated customer traffic analysis to understand customer behavior across different channels and optimize resource allocation. Finally, the growing need for enhanced security and loss prevention is also contributing to market adoption. Competition in the market is intense, with a range of established and emerging players offering diverse solutions. Companies such as V-Count, Visionarea, Beonic (Blix), Retail Next, Who's up, Placer.ai, ShopperTrak Analytics Suite, Footfall Cam, Trax sales, Trafsys, Safari.ai, StoreTech, and Vemco Group are vying for market share by offering innovative features, such as integration with other retail analytics platforms, advanced reporting capabilities, and AI-powered insights. Future growth will likely be influenced by the continued development of AI and machine learning algorithms to enhance data analysis and predictive capabilities, as well as by the increasing adoption of cloud-based solutions to improve accessibility and scalability. Geographic expansion into emerging markets with rapidly growing retail sectors will also play a crucial role in shaping the market's trajectory.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 4.37(USD Billion) |
| MARKET SIZE 2025 | 4.71(USD Billion) |
| MARKET SIZE 2035 | 10.0(USD Billion) |
| SEGMENTS COVERED | Deployment Type, End User, Functionality, Pricing Model, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | increasing online presence, data-driven decision making, growing e-commerce sector, demand for real-time analytics, rising mobile traffic |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Statcounter, Chartbeat, Kissmetrics, SAP, Piwik PRO, Crazy Egg, Google, Heap, Microsoft, Adobe, Salesforce, SimilarWeb, Mixpanel, IBM, Oracle |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for real-time data, Integration with AI-driven analytics, Rising adoption of e-commerce platforms, Enhanced focus on user experience, Growing need for data privacy compliance |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.8% (2025 - 2035) |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.