100+ datasets found
  1. g

    Website Traffic Dataset

    • gts.ai
    json
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

  2. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Homan, Sophia
    Honig, Joshua
    Soni, Shreena
    Chan-Tin, Eric
    Ferrell, Nathan
    Moran, Madeline
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  3. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  4. d

    Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C...

    • datarade.ai
    .csv, .xls
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2025). Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C Website Visitor Identity Resolution [Dataset]. https://datarade.ai/data-products/traffic-continuum-from-solution-publishing-500m-us-web-traf-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Unlock the Potential of Your Web Traffic with Advanced Data Resolution

    In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.

    Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.

    Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.

    Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.

    Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.

    Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.

    Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.

    Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.

    How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:

    Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.

    Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.

    Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.

    Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.

    Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.

    Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...

  5. V

    Visitor Tracking Software Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Visitor Tracking Software Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/visitor-tracking-software-tools-1394294
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for visitor tracking software tools is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated market value of $12 billion by 2033. This growth is fueled by several key factors: the rising adoption of e-commerce, the increasing complexity of online marketing campaigns, the demand for personalized user experiences, and the growing availability of sophisticated analytics tools capable of providing actionable insights from website traffic data. Major trends shaping the market include the integration of AI and machine learning for predictive analytics, the increasing use of heatmaps and session recordings for detailed user behavior analysis, and a growing focus on privacy-compliant data collection methods. However, market growth faces certain restraints. Concerns around data privacy and compliance with regulations like GDPR are impacting adoption rates. Furthermore, the competitive landscape is crowded, with both established players like Google and specialized providers like Crazy Egg vying for market share. The market is segmented by solution type (e.g., website analytics, heatmap tools, session recording), deployment model (cloud-based, on-premise), enterprise size (small, medium, large), and industry vertical. Leading companies such as Crazy Egg, Mixpanel, and FullStory are constantly innovating to improve the accuracy and depth of their offerings, while smaller companies are focusing on niche functionalities to differentiate themselves. The future success of these tools depends heavily on continuing innovation in the areas of data security, user experience, and integration with other marketing platforms.

  6. W

    Website Traffic Analysis Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Website Traffic Analysis Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/website-traffic-analysis-tool-1455386
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.

  7. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/62549059/?iid=003-357&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  8. Network traffic datasets created by Single Flow Time Series Analysis

    • zenodo.org
    • explore.openaire.eu
    • +1more
    csv, pdf
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Koumar; Josef Koumar; Karel Hynek; Karel Hynek; Tomáš Čejka; Tomáš Čejka (2024). Network traffic datasets created by Single Flow Time Series Analysis [Dataset]. http://doi.org/10.5281/zenodo.8035724
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Josef Koumar; Josef Koumar; Karel Hynek; Karel Hynek; Tomáš Čejka; Tomáš Čejka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Network traffic datasets created by Single Flow Time Series Analysis

    Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:

    J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.

    This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf

    In the following table is a description of each dataset file:

    File nameDetection problemCitation of original raw dataset
    botnet_binary.csv Binary detection of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
    botnet_multiclass.csv Multi-class classification of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
    cryptomining_design.csvBinary detection of cryptomining; the design part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
    cryptomining_evaluation.csv Binary detection of cryptomining; the evaluation part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
    dns_malware.csv Binary detection of malware DNS Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021.
    doh_cic.csv Binary detection of DoH

    Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020

    doh_real_world.csv Binary detection of DoH Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022
    dos.csv Binary detection of DoS Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019.
    edge_iiot_binary.csv Binary detection of IoT malware Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
    edge_iiot_multiclass.csvMulti-class classification of IoT malwareMohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
    https_brute_force.csvBinary detection of HTTPS Brute ForceJan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020
    ids_cic_binary.csvBinary detection of intrusion in IDSIman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
    ids_cic_multiclass.csv Multi-class classification of intrusion in IDS Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
    ids_unsw_nb_15_binary.csv Binary detection of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
    ids_unsw_nb_15_multiclass.csv Multi-class classification of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
    iot_23.csv Binary detection of IoT malware Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23
    ton_iot_binary.csv Binary detection of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
    ton_iot_multiclass.csv Multi-class classification of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
    tor_binary.csv Binary detection of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
    tor_multiclass.csv Multi-class classification of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
    vpn_iscx_binary.csv Binary detection of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
    vpn_iscx_multiclass.csv Multi-class classification of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
    vpn_vnat_binary.csv Binary detection of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022
    vpn_vnat_multiclass.csvMulti-class classification of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022

  9. D

    Network Traffic Analysis NTA Software Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Network Traffic Analysis NTA Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-network-traffic-analysis-nta-software-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Dec 4, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Network Traffic Analysis (NTA) Software Market Outlook



    The global Network Traffic Analysis (NTA) Software market size is poised to witness a robust growth trajectory, with a projected market valuation rising from approximately USD 3.5 billion in 2023 to an impressive USD 12.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 15.2% during the forecast period. The surge in this market is predominantly fueled by the increasing need for sophisticated cybersecurity measures due to the escalating frequency and complexity of cyber threats. Organizations are progressively recognizing the critical importance of NTA software in detecting, monitoring, and responding to potential network anomalies and threats, driving the market's expansion.



    A major growth factor contributing to the burgeoning NTA Software market is the exponential growth in data traffic, attributed to the widespread adoption of cloud computing, IoT devices, and the ongoing digital transformation across industries. As enterprises expand their digital footprint, the volume of data traversing networks has seen an unprecedented rise, necessitating advanced network traffic analysis solutions to ensure efficient management and security of data. Moreover, the increasing sophistication of cyber threats, including advanced persistent threats (APTs) and ransomware, has made continuous network monitoring and analysis indispensable for organizations striving to protect sensitive information and maintain business continuity.



    Another significant driver for the NTA Software market is the growing regulatory pressures and compliance requirements across various sectors, including BFSI, healthcare, and government. These regulations mandate organizations to implement robust cybersecurity frameworks and ensure data protection, thereby propelling the demand for comprehensive NTA solutions. Companies are increasingly investing in NTA software to comply with standards such as GDPR, HIPAA, and PCI-DSS, which emphasize the importance of network security and data privacy. As regulatory landscapes continue to evolve, the necessity for effective network traffic analysis tools becomes even more pronounced, further accelerating market growth.



    The increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies in network traffic analysis is also a key factor driving the market's growth. These technologies enhance the capabilities of NTA software by enabling automated threat detection, predictive analytics, and anomaly detection, thereby improving the overall efficiency and accuracy of network monitoring. The integration of AI and ML has allowed NTA solutions to evolve from traditional reactive systems to proactive security platforms, capable of identifying and mitigating threats in real-time. This technological advancement is particularly attractive to large enterprises and government agencies that require robust security measures to safeguard critical infrastructure and data.



    From a regional perspective, North America is anticipated to lead the NTA Software market during the forecast period, owing to the region's well-established IT infrastructure and the presence of major industry players. The Asia Pacific region, however, is expected to witness the fastest growth, driven by rapid technological advancements, increasing internet penetration, and a rising focus on cybersecurity across emerging economies such as India and China. Europe also presents significant growth opportunities, supported by stringent data protection regulations and growing investments in cybersecurity solutions. These regional dynamics highlight the diverse growth trajectories and opportunities present across the global NTA Software market.



    Component Analysis



    The Network Traffic Analysis Software market is segmented into two primary components: software and services. The software segment accounts for the largest share of the market and is expected to continue its dominance throughout the forecast period. This is primarily due to the increasing demand for advanced network traffic analysis solutions that can efficiently monitor, detect, and respond to potential security threats. With the escalating frequency of cyberattacks, organizations are increasingly leveraging sophisticated software to enhance their network security posture and mitigate risks. The software component includes various solutions such as real-time traffic monitoring, anomaly detection, and threat intelligence, which are integral to comprehensive network security strategies.



    The services segment, on the other hand, is projected to witness signi

  10. W

    Customs and Border Protection Network Web Trends Server Master Dataset

    • cloud.csiss.gmu.edu
    Updated Mar 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2021). Customs and Border Protection Network Web Trends Server Master Dataset [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/customs-and-border-protection-network-web-trends-server-master-dataset
    Explore at:
    Dataset updated
    Mar 6, 2021
    Dataset provided by
    United States
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The CBPnet Web Trends Server is a COTS report generation product uses proprietary data storage and standard web server logs as input and supports the Office of Public Affairs in providing advanced reports for web traffic analysis for CBPnet and related web sites. It utilizes product specific database to support it's functionality.

  11. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  12. m

    Encrypted Traffic Feature Dataset for Machine Learning and Deep Learning...

    • data.mendeley.com
    Updated Dec 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zihao Wang (2022). Encrypted Traffic Feature Dataset for Machine Learning and Deep Learning based Encrypted Traffic Analysis [Dataset]. http://doi.org/10.17632/xw7r4tt54g.1
    Explore at:
    Dataset updated
    Dec 6, 2022
    Authors
    Zihao Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This traffic dataset contains a balance size of encrypted malicious and legitimate traffic for encrypted malicious traffic detection and analysis. The dataset is a secondary csv feature data that is composed of six public traffic datasets.

    Our dataset is curated based on two criteria: The first criterion is to combine widely considered public datasets which contain enough encrypted malicious or encrypted legitimate traffic in existing works, such as Malware Capture Facility Project datasets. The second criterion is to ensure the final dataset balance of encrypted malicious and legitimate network traffic.

    Based on the criteria, 6 public datasets are selected. After data pre-processing, details of each selected public dataset and the size of different encrypted traffic are shown in the “Dataset Statistic Analysis Document”. The document summarized the malicious and legitimate traffic size we selected from each selected public dataset, the traffic size of each malicious traffic type, and the total traffic size of the composed dataset. From the table, we are able to observe that encrypted malicious and legitimate traffic equally contributes to approximately 50% of the final composed dataset.

    The datasets now made available were prepared to aim at encrypted malicious traffic detection. Since the dataset is used for machine learning or deep learning model training, a sample of train and test sets are also provided. The train and test datasets are separated based on 1:4. Such datasets can be used for machine learning or deep learning model training and testing based on selected features or after processing further data pre-processing.

  13. D

    Network Traffic Analysis Solutions Market Report | Global Forecast From 2025...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Network Traffic Analysis Solutions Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-network-traffic-analysis-solutions-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Network Traffic Analysis Solutions Market Outlook



    The global network traffic analysis solutions market size was estimated at USD 3.5 billion in 2023 and is projected to reach USD 9.8 billion by 2032, reflecting a compound annual growth rate (CAGR) of 12.1%. This substantial growth is largely driven by the increasing demand for robust cybersecurity measures across various sectors. With an ever-growing volume of network traffic due to the proliferation of connected devices and the adoption of digital transformation initiatives, organizations are compelled to deploy sophisticated traffic analysis tools to effectively monitor, manage, and secure their networks. The expansion of cloud services, coupled with the rise in cyber threats, further accentuates the need for advanced traffic analysis capabilities.



    The surge in cyber threats, including sophisticated hacking techniques and ransomware attacks, has become a pivotal growth factor for the network traffic analysis solutions market. As organizations strive to protect sensitive data and ensure the integrity of their networks, there is a heightened demand for solutions that can provide real-time visibility and control over network traffic. This growing emphasis on cybersecurity is not limited to large enterprises but is increasingly becoming a priority for small and medium enterprises (SMEs) as well. Consequently, the increasing cyber threat landscape is stimulating the adoption of network traffic analysis solutions across different organizational sizes, driving market growth.



    Moreover, the rise of Internet of Things (IoT) devices is significantly contributing to the increased need for network traffic analysis. IoT devices generate vast amounts of data that need to be managed effectively to prevent network congestion and potential security breaches. By leveraging traffic analysis solutions, organizations can optimize IoT device performance and ensure seamless data flow while maintaining robust security protocols. As the IoT ecosystem continues to expand, it is expected to further fuel the demand for network traffic analysis solutions, facilitating better management and security of network resources.



    In addition to cybersecurity concerns and IoT proliferation, regulatory compliance is another critical growth driver for the network traffic analysis solutions market. Organizations across various industries, such as BFSI, healthcare, and government sectors, are under increasing pressure to comply with stringent data protection regulations. Network traffic analysis solutions help these organizations monitor compliance effectively by providing detailed insights into network activity and data flows. As regulations continue to evolve and become more complex, the role of network traffic analysis solutions in ensuring compliance and mitigating risks is expected to become increasingly important, further bolstering market growth.



    Network Telemetry Solutions are becoming increasingly essential in the realm of network traffic analysis. These solutions provide real-time data collection and analysis, enabling organizations to gain deeper insights into their network operations. By leveraging network telemetry, businesses can proactively identify and address potential issues before they escalate into significant problems. This capability is particularly valuable in today's fast-paced digital environment, where network performance and security are critical to maintaining operational efficiency. As the demand for more granular visibility into network activities grows, network telemetry solutions are poised to play a pivotal role in enhancing the capabilities of traffic analysis tools, offering a more comprehensive approach to network management and security.



    From a regional perspective, North America is anticipated to maintain a dominant position in the network traffic analysis solutions market. This can be attributed to the presence of major technology companies, a high adoption rate of advanced technologies, and stringent cybersecurity regulations. The region's established digital infrastructure and focus on innovation also contribute to market growth. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate due to rapid digitalization, increasing internet penetration, and growing investments in IT infrastructure. As businesses in this region continue to adopt digital technologies and face rising cyber threats, the demand for network traffic analysis solutions is expected to surge significantly.



    Component Analysis</h2

  14. Share of global mobile website traffic 2015-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2024 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  15. Z

    Data from: CESNET-QUIC22: A large one-month QUIC network traffic dataset...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hynek, Karel (2024). CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7409923
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Hynek, Karel
    Luxemburk, Jan
    Čejka, Tomáš
    Šiška, Pavel
    Lukačovič, Andrej
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size:

    W-2022-44

    Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45

    Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46

    Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47

    Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22

    Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M

    Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list below. For each flow data file, there is a JSON file with the number of saved and seen (before sampling) flows per service and total counts of all received (observed on the CESNET2 network), service (belonging to one of the dataset's services), and saved (provided in the dataset) flows. There is also the stats-week.json file aggregating flow counts of a whole week and the stats-dataset.json file aggregating flow counts for the entire dataset. Flow counts before sampling can be used to compute sampling ratios of individual services and to resample the dataset back to the original service distribution. Moreover, various dataset statistics, such as feature distributions and value counts of QUIC versions and user agents, are provided in the dataset-statistics folder. The mapping between services and service providers is provided in the servicemap.csv file, which also includes SNI domains used for ground truth labeling. The following list describes flow data fields in CSV files:

    ID: Unique identifier SRC_IP: Source IP address DST_IP: Destination IP address DST_ASN: Destination Autonomous System number SRC_PORT: Source port DST_PORT: Destination port PROTOCOL: Transport protocol QUIC_VERSION QUIC: protocol version QUIC_SNI: Server Name Indication domain QUIC_USER_AGENT: User agent string, if available in the QUIC Initial Packet TIME_FIRST: Timestamp of the first packet in format YYYY-MM-DDTHH-MM-SS.ffffff TIME_LAST: Timestamp of the last packet in format YYYY-MM-DDTHH-MM-SS.ffffff DURATION: Duration of the flow in seconds BYTES: Number of transmitted bytes from client to server BYTES_REV: Number of transmitted bytes from server to client PACKETS: Number of packets transmitted from client to server PACKETS_REV: Number of packets transmitted from server to client PPI: Packet metadata sequence in the format: [[inter-packet times], [packet directions], [packet sizes]] PPI_LEN: Number of packets in the PPI sequence PPI_DURATION: Duration of the PPI sequence in seconds PPI_ROUNDTRIPS: Number of roundtrips in the PPI sequence PHIST_SRC_SIZES: Histogram of packet sizes from client to server PHIST_DST_SIZES: Histogram of packet sizes from server to client PHIST_SRC_IPT: Histogram of inter-packet times from client to server PHIST_DST_IPT: Histogram of inter-packet times from server to client APP: Web service label CATEGORY: Service category FLOW_ENDREASON_IDLE: Flow was terminated because it was idle FLOW_ENDREASON_ACTIVE: Flow was terminated because it reached the active timeout FLOW_ENDREASON_OTHER: Flow was terminated for other reasons

    Link to other CESNET datasets

    https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/ https://github.com/CESNET/cesnet-datazoo Please cite the original data article:

    @article{CESNETQUIC22, author = {Jan Luxemburk and Karel Hynek and Tomáš Čejka and Andrej Lukačovič and Pavel Šiška}, title = {CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines}, journal = {Data in Brief}, pages = {108888}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.108888}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923000069} }

  16. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Belarus, Jamaica, Saint Vincent and the Grenadines, Liechtenstein, Russian Federation, India, Latvia, Monaco, Uzbekistan, Jordan
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  17. Z

    Clickstream Analytics Market By Deployment mode (Cloud and On-premise), By...

    • zionmarketresearch.com
    pdf
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Clickstream Analytics Market By Deployment mode (Cloud and On-premise), By Component (Services and Software), By Application (Traffic Analysis, Click Path Optimization, Basket Analysis & Personalization, Customer Analysis, Website/Application Optimization, And Others), By Industry Vertical (BFSI, Transportation & Logistics, Media & Entertainment, Energy & Utilities, Government, Travel & Hospitality, Telecommunications & IT, And Other Industry Verticals), And By Region: - Global and Regional Industry Overview, Market Intelligence, Comprehensive Analysis, Historical Data, and Forecasts, 2023-2030 [Dataset]. https://www.zionmarketresearch.com/report/clickstream-analytics-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Zion Market Research
    License

    https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    The global Clickstream Analytics Market was valued at $615.37 Million in 2022, and is projected to $1,298.63 Million by 2030, growing at a CAGR of 11.26%.

  18. GTT23: A 2023 Dataset of Genuine Tor Traces

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Jansen; Rob Jansen; Ryan Wails; Ryan Wails; Aaron Johnson; Aaron Johnson (2024). GTT23: A 2023 Dataset of Genuine Tor Traces [Dataset]. http://doi.org/10.5281/zenodo.10620520
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rob Jansen; Rob Jansen; Ryan Wails; Ryan Wails; Aaron Johnson; Aaron Johnson
    Time period covered
    2023
    Description
    The GTT23 dataset contains network metadata of encrypted traffic measured from exit relays in the Tor network over a 13-week measurement period in 2023. The metadata is suitable for analyzing and evaluating website fingerprinting attacks and defenses.
    Our dataset measurement process was designed to prioritize safety and privacy and was developed through consultation with the Tor Research Safety Board (TRSB, submission #37). Our TRSB interaction resulted in a “No Objections” score.
    The measurement process, additional safety and ethical considerations, and a statistical analysis of the dataset will be presented in further detail in a forthcoming publication.
  19. N

    Network Traffic Analysis System Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Network Traffic Analysis System Report [Dataset]. https://www.archivemarketresearch.com/reports/network-traffic-analysis-system-37628
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global network traffic analysis system market is projected to reach a size of USD XX million by 2033, growing at a CAGR of XX% from 2025 to 2033. The market is driven by the increasing demand for network visibility and security, the proliferation of Internet of Things (IoT) devices, and the growing adoption of cloud-based solutions. Network traffic analysis systems provide organizations with visibility into their network traffic, allowing them to identify and mitigate threats, optimize network performance, and improve user experience. The market is segmented by type, application, and region. By type, the market is segmented into cloud-based and local deployment. By application, the market is segmented into large-sized businesses and small and medium-sized businesses. Geographically, the market is segmented into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is the largest market for network traffic analysis systems, followed by Europe and Asia Pacific. The market in Asia Pacific is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of cloud-based solutions and the growing number of IoT devices in the region.

  20. W

    Web Analytics Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Web Analytics Report [Dataset]. https://www.archivemarketresearch.com/reports/web-analytics-559188
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global web analytics market, valued at $5529.7 million in 2025, is poised for substantial growth. While the provided CAGR is missing, considering the rapid advancements in digital technologies and the increasing reliance on data-driven decision-making across industries, a conservative estimate would place the Compound Annual Growth Rate (CAGR) between 15% and 20% for the forecast period 2025-2033. This growth is fueled by several key drivers: the rising adoption of cloud-based analytics solutions, the increasing demand for real-time data insights, and the growing need for personalized customer experiences. Furthermore, the expansion of e-commerce and the proliferation of mobile devices are significantly contributing to the market's expansion. Emerging trends such as artificial intelligence (AI) and machine learning (ML) integration within web analytics platforms are further enhancing analytical capabilities and driving market growth. While challenges like data privacy concerns and the complexity of integrating diverse data sources exist, the overall market outlook remains positive, suggesting a significant increase in market value by 2033. The competitive landscape is dynamic, with a mix of established players like Adobe, Google, and IBM alongside agile startups like Heap and Mouseflow. These companies offer a range of solutions catering to different business sizes and needs, from basic website traffic analysis to sophisticated predictive analytics. The market is witnessing a shift towards more user-friendly and visually appealing dashboards, making web analytics accessible to a broader range of users beyond dedicated data scientists. This democratization of data, coupled with ongoing technological advancements, promises to further accelerate market growth and consolidate the position of web analytics as a critical component of successful digital strategies across all sectors.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/

Website Traffic Dataset

Explore at:
jsonAvailable download formats
Dataset updated
Aug 23, 2024
Dataset provided by
GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
Authors
GTS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

Search
Clear search
Close search
Google apps
Main menu