This statistic shows a comparison of webpage traffic sources of Slack and Salesforce in April 2019. According to data collected by GP Bullhound, ********** percent of Slack's webpage traffic during the measured period was direct, compared to Salesforce's more mixed traffic strategy.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
google.com is ranked #1 in US with 101.35B Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!
As of the last quarter of 2023, ***** percent of web traffic in the United States originated from mobile devices, down from ***** percent in the fourth quarter of 2022. In comparison, over half of web traffic worldwide was generated via mobile in the last examined period.
Jorge Godoy
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
In 2019, Volume of Road Traffic in Ireland rose 0.2% compared to the previous year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Across popular online marketplace websites visited by users in Australia in February 2025, temu.com registered the highest growth in its website traffic compared to the previous year, with an annual growth of over ** percent. In comparison, ebay.com.au saw a decrease in its website traffic compared to the previous year, with an annual decrease of around **** percent.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
reddit.com is ranked #5 in US with 4.66B Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!
This statistic depicts how convenience store operators in the United States anticipate their total number of visitors in 2018 will compare to the total number of visitors in 2017. According to the survey, ** percent of respondents believe that store foot traffic will be slightly higher in 2018 compared to 2017.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
amazon.com is ranked #3 in US with 2.82B Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Segments d'une minute de trajets réalisés à vélo dans trois villes (Copenhague, Montréal et Paris) avec les mesures d'exposition au bruit (LAEQ). Les fichiers géographiques sont au format gpkg.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provides a comparison table of the top ten accidents on traffic sections in Kaohsiung City in 108 years
The Traffic Camera dataset contains the location and number for every Traffic camera in the City of Toronto. These datasets will be updated within 2 minutes when cameras are added, changed, or removed. The camera list files can be found at: https://opendata.toronto.ca/transportation/tmc/rescucameraimages/Data/ tmcearthcameras.csv - CSV, camera list in CSV tmcearthcameras.json - json formatted list. tmcearthcamerassn.json - json formatted file containing the timestamp of the list files. tmcearthcameras.xml - xml formatted list. TMCEarthCameras.xsd - xml schema document. The dataset includes the number, name, WGS84 information (latitude, longitude), comparison directions (1- Looking North, 2-Looking East, 3-Looking South and 4-Looking West), and camera group. The camera images associated with the dataset can be found at: https://opendata.toronto.ca/transportation/tmc/rescucameraimages/CameraImages. And the comparison images can be found at: https://opendata.toronto.ca/transportation/tmc/rescucameraimages/ComparisonImages. The camera image file name is created as follows: loc####.jpg - where #### is the camera number. (i.e. loc1234.jpg) The camera comparison image file names are created as follows: loc####D.jpg - where #### is the camera number and D is the direction. (i.e. loc1234e.jpg and loc1234w.jpg) The camera images are displayed on the City's website at http://www.toronto.ca/rescu/index.htmor http://www.toronto.ca/rescu/list.htm
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Network traffic datasets created by Single Flow Time Series Analysis
Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:
J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.
This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf
In the following table is a description of each dataset file:
File name | Detection problem | Citation of original raw dataset |
botnet_binary.csv | Binary detection of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
botnet_multiclass.csv | Multi-class classification of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
cryptomining_design.csv | Binary detection of cryptomining; the design part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
cryptomining_evaluation.csv | Binary detection of cryptomining; the evaluation part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
dns_malware.csv | Binary detection of malware DNS | Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021. |
doh_cic.csv | Binary detection of DoH |
Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020 |
doh_real_world.csv | Binary detection of DoH | Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022 |
dos.csv | Binary detection of DoS | Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019. |
edge_iiot_binary.csv | Binary detection of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
edge_iiot_multiclass.csv | Multi-class classification of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
https_brute_force.csv | Binary detection of HTTPS Brute Force | Jan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020 |
ids_cic_binary.csv | Binary detection of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
ids_cic_multiclass.csv | Multi-class classification of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
ids_unsw_nb_15_binary.csv | Binary detection of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
ids_unsw_nb_15_multiclass.csv | Multi-class classification of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
iot_23.csv | Binary detection of IoT malware | Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23 |
ton_iot_binary.csv | Binary detection of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
ton_iot_multiclass.csv | Multi-class classification of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
tor_binary.csv | Binary detection of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
tor_multiclass.csv | Multi-class classification of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
vpn_iscx_binary.csv | Binary detection of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
vpn_iscx_multiclass.csv | Multi-class classification of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
vpn_vnat_binary.csv | Binary detection of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
vpn_vnat_multiclass.csv | Multi-class classification of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of traffic parameters for all the vehicles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Performance comparison on traffic datasets of different scales.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
twitter.com is ranked #10 in JP with 1.11B Traffic. Categories: Newspapers, Online Services. Learn more about website traffic, market share, and more!
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
lcd-compare.com is ranked #3142 in FR with 506.52K Traffic. Categories: Retail, Online Services. Learn more about website traffic, market share, and more!
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the Annual Comparative Statement of Traffic on international Scheduled Services for Last three years. It includes passengers carried, freight carried, mail carried, passenger load factor, and passenger kilometres performed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.
Traffic Volume for Key Brisbane Corridors. Includes traffic volumes, travel times and incidents.
This dataset will no longer be updated. Data is being published in a new format in a new dataset called Traffic Management — Key Corridor — Monthly Performance Report.
Information on Traffic Management is available on the Brisbane City Council website.
This dataset contains the following resources:1. Traffic Volume for Key Brisbane Corridors.
Excel file containing: * 6-Month Average Daily, AM & PM Peak Traffic Volume * Network Daily Traffic Volume Comparison * 6-Month Average AM & PM Peak Travel Time * Network Travel Time Comparison * Incident Data * Note: volume day of the week and TT day of week was discontinued and is not included from Jul-Dec 2015
Excel file containing: * 6-Month Average Daily, AM & PM Peak Traffic Volume * Network Daily Traffic Volume Comparison * 6-Month Average AM & PM Peak Travel Time * Network Travel Time Comparison * Incident Data * Average daily traffic volume for each day of the week (veh/day) * Travel time per kilometre by day of the week (mm:ss/km)
This statistic shows a comparison of webpage traffic sources of Slack and Salesforce in April 2019. According to data collected by GP Bullhound, ********** percent of Slack's webpage traffic during the measured period was direct, compared to Salesforce's more mixed traffic strategy.