100+ datasets found
  1. n

    Traffic congestion Dataset

    • narcis.nl
    • data.mendeley.com
    Updated Nov 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bekele, B (via Mendeley Data) (2020). Traffic congestion Dataset [Dataset]. http://doi.org/10.17632/wtp4ssmwsd.1
    Explore at:
    Dataset updated
    Nov 2, 2020
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Bekele, B (via Mendeley Data)
    Description

    The main aim of this dataset is to enable detection of traffic congestion from surveillance cameras using one-stage object detectors. The dataset contains congested and uncongested traffic scenes with their respective labels. This dataset is collected from different surveillance cameras video footage. To prepare the dataset frames are extracted from video sources and resized to a dimension of 500 x 500 with .jpg image format. To Annotate, the image LabelImg software has used. The format of the label is .txt with the same name as the image. The dataset is mainly prepared for YOLO Models but it can be converted to other models format.

  2. C

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • data.cityofchicago.org
    • catalog.data.gov
    csv, xlsx, xml
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Se/n4j6-wkkf
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic.

    Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  3. A

    Traffic-Related Data

    • data.boston.gov
    html, pdf
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Transportation Department (2021). Traffic-Related Data [Dataset]. https://data.boston.gov/dataset/traffic-related-data
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Boston Transportation Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.

    ~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.

    ~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.

    ~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.

  4. C

    Chicago Traffic Tracker - Congestion Estimates by Regions

    • data.cityofchicago.org
    • catalog.data.gov
    application/rdfxml +5
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Chicago Traffic Tracker - Congestion Estimates by Regions [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Re/t2qc-9pjd
    Explore at:
    application/rdfxml, csv, json, xml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jul 23, 2025
    Area covered
    Chicago
    Description

    This dataset contains the current estimated congestion for the 29 traffic regions. For a detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area).

    There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  5. United States Traffic Congestion Index: Average: United States: New York...

    • ceicdata.com
    Updated Nov 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States Traffic Congestion Index: Average: United States: New York City [Dataset]. https://www.ceicdata.com/en/united-states/traffic-congestion-index-average-by-cities
    Explore at:
    Dataset updated
    Nov 24, 2022
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 13, 2023 - Nov 24, 2023
    Area covered
    United States
    Variables measured
    Vehicle Traffic
    Description

    Traffic Congestion Index: Average: United States: New York City data was reported at 22.820 Index in 24 Nov 2023. This records a decrease from the previous number of 28.110 Index for 23 Nov 2023. Traffic Congestion Index: Average: United States: New York City data is updated daily, averaging 23.835 Index from Jan 2019 (Median) to 24 Nov 2023, with 1682 observations. The data reached an all-time high of 66.530 Index in 06 Oct 2022 and a record low of 0.840 Index in 31 Mar 2020. Traffic Congestion Index: Average: United States: New York City data remains active status in CEIC and is reported by CEIC Data. The data is categorized under Global Database’s United States – Table TI.TCI: Traffic Congestion Index: Average: by Cities (Discontinued). [COVID-19-IMPACT]

  6. d

    Traffic Data | Traffic volume, speed and congestion data for cars and trucks...

    • datarade.ai
    .json, .csv
    Updated Oct 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban SDK (2021). Traffic Data | Traffic volume, speed and congestion data for cars and trucks in USA and Canada [Dataset]. https://datarade.ai/data-products/traffic-data-traffic-volume-speed-and-congestion-data-for-urban-sdk
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Oct 1, 2021
    Dataset authored and provided by
    Urban SDK
    Area covered
    Canada, United States
    Description

    Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.

    "With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."

    Traffic Volume, Speed and Congestion Data Type Profile:

    • Traffic volume in annual average daily and daily traffic volumes per roadway
    • Average travel speed in 15 minute and hourly intervals per roadway
    • Travel time in seconds in 15 minute intervals per roadway
    • Commute travel time in minutes in annual interval estimates in geohash boundaries
    • Congested roadway segments based on travel time reliability in monthly intervals per roadway
    • Traffic data attributed spatially to state, county, road functional class, road name, road segment, segment length in km or miles as geojson

    Industry Solutions include:

    • Transportation Planning
    • Traffic Monitoring
    • Congestion Management and Trend Analysis
    • Travel Demand Modeling
    • Traffic Impact Analysis
    • Parking Analysis
    • Transit System Planning
    • Route Planning
    • Civil Engineering
    • Site Selection

    Use cases:

    • Traffic monitoring, data analysis, and forecasting for transportation, transit, and urban planning.
    • Improve dynamic routing with accurate travel time and congestion data
    • Environmental and emissions analysis
    • Travel demand and transportation modeling
    • Location analysis and assessment for commercial site selection for retail or logistics related locations
  7. s

    Traffic Flow Data 01 April to 19 September 2024 SDCC - Dataset -...

    • data.smartdublin.ie
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Traffic Flow Data 01 April to 19 September 2024 SDCC [Dataset]. https://data.smartdublin.ie/dataset/traffic-flow-data-01-april-to-19-september-2024-sdcc
    Explore at:
    Dataset updated
    Nov 27, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data 01 April to 19 September 2024. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions.

  8. d

    NYS Traffic Data Viewer

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2023). NYS Traffic Data Viewer [Dataset]. https://catalog.data.gov/dataset/nys-traffic-data-viewer
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    This data set features a hyperlink to the New York State Department of Transportation’s (NYSDOT) Traffic Data (TD) Viewer web page, which includes a link to the Traffic Data interactive map. The Traffic Data Viewer is a geospatially based Geographic Information System (GIS) application for displaying data contained in the roadway inventory database. The interactive map has five viewable data categories or ‘layers’. The five layers include: Average Daily Traffic (ADT); Continuous Counts; Short Counts; Bridges; and Grade Crossings throughout New York State.

  9. d

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2024-Current [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-historical-congestion-estimates-by-segment-2024-current
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for over 1,000 traffic segments, starting 6/11/2024 (except for a single time slice on 3/8/2024). Older records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  10. Traffic Volume and Classification in Massachusetts

    • mass.gov
    Updated Sep 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Department of Transportation (2017). Traffic Volume and Classification in Massachusetts [Dataset]. https://www.mass.gov/traffic-volume-and-classification-in-massachusetts
    Explore at:
    Dataset updated
    Sep 18, 2017
    Dataset authored and provided by
    Massachusetts Department of Transportationhttp://www.massdot.state.ma.us/
    Area covered
    Massachusetts
    Description

    A collection of historic traffic count data and guidelines for how to collect new data for Massachusetts Department of Transportation (MassDOT) projects.

  11. D

    Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/real-time-traffic-data-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Real Time Traffic Data Market Outlook



    The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.



    The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.



    Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.



    Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.



    The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.



    Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.



    Component Analysis



    The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems

  12. C

    Chicago Traffic Tracker - Historical Congestion Estimates by Region -...

    • data.cityofchicago.org
    • catalog.data.gov
    application/rdfxml +5
    Updated Jul 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Region - 2018-Current [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/kf7e-cur8
    Explore at:
    application/rdfxml, tsv, xml, csv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jul 19, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for the 29 traffic regions, starting in approximately March 2018. Older records are in https://data.cityofchicago.org/d/emtn-qqdi. The most recent estimates for each segment are in https://data.cityofchicago.org/d/t2qc-9pjd.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions. Current estimates of traffic congestion by region are available at http://bit.ly/103beCf.

  13. a

    OC Waze Traffic Jam Data View

    • data-ocpw.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OC Waze Traffic Jam Data View [Dataset]. https://data-ocpw.opendata.arcgis.com/datasets/oc-waze-traffic-jam-data-view
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset authored and provided by
    OC Public Works
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    Description

    OC Waze Partner Hub GeoRSS Cumulative Traffic Jam Data from Velocity feed analytics. The data are updated in regular (5-minute) intervals.The traffic jams feed includes data gathered in real time about traffic slowdowns on specific road segments. Waze generates traffic jam information by processing the following data sources: GPS location-points sent from user phones (users who drive while using the app) and calculations of the current average speed vs. free-flow speed (maximum speed measured on the road-segment). For Unusual traffic (irregularities) Waze uses historic average speeds (on 30 minute time-slots). User generated reports - reports shared by Waze users who encounter traffic jams. These appear as regular alerts, and also affect the way we identify and present traffic jams.Original data provided by Waze App. Learn more at Waze.com.

  14. C

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • data.cityofchicago.org
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated May 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2018). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2011-2018 [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss
    Explore at:
    xml, csv, application/rdfxml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    May 4, 2018
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for 1270 traffic segments, in selected time periods from August 2011 to May 2018. Newer records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions. Current estimates of traffic congestion by region are available at http://bit.ly/Vz3rIh.

  15. World Traffic Map

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    • +1more
    Updated Dec 13, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). World Traffic Map [Dataset]. https://hub.arcgis.com/maps/esri::world-traffic-map/about
    Explore at:
    Dataset updated
    Dec 13, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  16. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  17. India Traffic Congestion Index: Average: India: Bangalore

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Traffic Congestion Index: Average: India: Bangalore [Dataset]. https://www.ceicdata.com/en/india/traffic-congestion-index-average-by-cities/traffic-congestion-index-average-india-bangalore
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 13, 2023 - Nov 24, 2023
    Area covered
    India
    Variables measured
    Vehicle Traffic
    Description

    Traffic Congestion Index: Average: India: Bangalore data was reported at 10.040 Index in 24 Nov 2023. This records a decrease from the previous number of 37.050 Index for 23 Nov 2023. Traffic Congestion Index: Average: India: Bangalore data is updated daily, averaging 22.160 Index from Jan 2019 (Median) to 24 Nov 2023, with 1682 observations. The data reached an all-time high of 61.730 Index in 07 Aug 2019 and a record low of 0.420 Index in 27 Mar 2020. Traffic Congestion Index: Average: India: Bangalore data remains active status in CEIC and is reported by CEIC Data. The data is categorized under Global Database’s India – Table TI.TCI: Traffic Congestion Index: Average: by Cities (Discontinued). [COVID-19-IMPACT]

  18. Data from: Annual Average Daily Traffic

    • gisdata-caltrans.opendata.arcgis.com
    • data.ca.gov
    • +2more
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California_Department_of_Transportation (2024). Annual Average Daily Traffic [Dataset]. https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    California Department of Transportationhttp://dot.ca.gov/
    Authors
    California_Department_of_Transportation
    Area covered
    Description

    Annual average daily traffic is the total volume for the year divided by 365 days. The traffic count year is from October 1st through September 30th. Very few locations in California are actually counted continuously. Traffic Counting is generally performed by electronic counting instruments moved from location throughout the State in a program of continuous traffic count sampling. The resulting counts are adjusted to an estimate of annual average daily traffic by compensating for seasonal influence, weekly variation and other variables which may be present. Annual ADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates. planning and designing highways and other purposes.Traffic Census Program Page

  19. Italy Traffic Congestion Index: Average: Italy: Turin

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Italy Traffic Congestion Index: Average: Italy: Turin [Dataset]. https://www.ceicdata.com/en/italy/traffic-congestion-index-average-by-cities/traffic-congestion-index-average-italy-turin
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 13, 2023 - Nov 24, 2023
    Area covered
    Italy
    Variables measured
    Vehicle Traffic
    Description

    Traffic Congestion Index: Average: Italy: Turin data was reported at 9.400 Index in 24 Nov 2023. This records a decrease from the previous number of 21.250 Index for 23 Nov 2023. Traffic Congestion Index: Average: Italy: Turin data is updated daily, averaging 4.860 Index from Jan 2019 (Median) to 24 Nov 2023, with 1682 observations. The data reached an all-time high of 50.500 Index in 15 Dec 2022 and a record low of 0.280 Index in 17 May 2020. Traffic Congestion Index: Average: Italy: Turin data remains active status in CEIC and is reported by CEIC Data. The data is categorized under Global Database’s Italy – Table TI.TCI: Traffic Congestion Index: Average: by Cities (Discontinued). [COVID-19-IMPACT]

  20. n

    Traffic Congestion of the Road Network of Thessaloniki

    • data.nap.gov.gr
    • ckan.mobidatalab.eu
    • +1more
    csv, json, xml
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hellenic Institute of Transport (2023). Traffic Congestion of the Road Network of Thessaloniki [Dataset]. https://data.nap.gov.gr/dataset/traffic-congestion
    Explore at:
    csv, json, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Hellenic Institute of Transport
    Area covered
    Thessaloniki
    Description

    Traffic congestion estimations of the road network of the wider urban area of Thessaloniki (Greece) produced using Floating Car Data (FCD).

    Congestion is classified as low, medium, or high.

    Εκτιμήσεις τρεχουσών κυκλοφοριακών συνθηκών στο οδικό δίκτυο της ευρύτερης αστικής περιοχής της Θεσσαλονίκης (Ελλάδα) χρησιμοποιώντας δεδομένα από οχήματα εν κινήσει (FCD).

    Το επίπεδο συμφόρησης κατηγοριοποιείται σε: χαμηλό, μέτριο ή υψηλό.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bekele, B (via Mendeley Data) (2020). Traffic congestion Dataset [Dataset]. http://doi.org/10.17632/wtp4ssmwsd.1

Traffic congestion Dataset

Explore at:
Dataset updated
Nov 2, 2020
Dataset provided by
Data Archiving and Networked Services (DANS)
Authors
Bekele, B (via Mendeley Data)
Description

The main aim of this dataset is to enable detection of traffic congestion from surveillance cameras using one-stage object detectors. The dataset contains congested and uncongested traffic scenes with their respective labels. This dataset is collected from different surveillance cameras video footage. To prepare the dataset frames are extracted from video sources and resized to a dimension of 500 x 500 with .jpg image format. To Annotate, the image LabelImg software has used. The format of the label is .txt with the same name as the image. The dataset is mainly prepared for YOLO Models but it can be converted to other models format.

Search
Clear search
Close search
Google apps
Main menu