100+ datasets found
  1. D

    Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/real-time-traffic-data-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Real Time Traffic Data Market Outlook



    The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.



    The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.



    Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.



    Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.



    The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.



    Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.



    Component Analysis



    The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems

  2. Annual Average Daily Traffic TDA

    • gis-fdot.opendata.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +1more
    Updated Jul 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Annual Average Daily Traffic TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/annual-average-daily-traffic-tda
    Explore at:
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 07/12/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt.zip

  3. d

    Traffic Data | Traffic volume, speed and congestion data for cars and trucks...

    • datarade.ai
    .json, .csv
    Updated Oct 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban SDK (2021). Traffic Data | Traffic volume, speed and congestion data for cars and trucks in USA and Canada [Dataset]. https://datarade.ai/data-products/traffic-data-traffic-volume-speed-and-congestion-data-for-urban-sdk
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Oct 1, 2021
    Dataset authored and provided by
    Urban SDK
    Area covered
    Canada, United States
    Description

    Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.

    "With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."

    Traffic Volume, Speed and Congestion Data Type Profile:

    • Traffic volume in annual average daily and daily traffic volumes per roadway
    • Average travel speed in 15 minute and hourly intervals per roadway
    • Travel time in seconds in 15 minute intervals per roadway
    • Commute travel time in minutes in annual interval estimates in geohash boundaries
    • Congested roadway segments based on travel time reliability in monthly intervals per roadway
    • Traffic data attributed spatially to state, county, road functional class, road name, road segment, segment length in km or miles as geojson

    Industry Solutions include:

    • Transportation Planning
    • Traffic Monitoring
    • Congestion Management and Trend Analysis
    • Travel Demand Modeling
    • Traffic Impact Analysis
    • Parking Analysis
    • Transit System Planning
    • Route Planning
    • Civil Engineering
    • Site Selection

    Use cases:

    • Traffic monitoring, data analysis, and forecasting for transportation, transit, and urban planning.
    • Improve dynamic routing with accurate travel time and congestion data
    • Environmental and emissions analysis
    • Travel demand and transportation modeling
    • Location analysis and assessment for commercial site selection for retail or logistics related locations
  4. w

    Global Urban Traffic Analytics Market Research Report: By Deployment Type...

    • wiseguyreports.com
    Updated Aug 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Urban Traffic Analytics Market Research Report: By Deployment Type (Cloud-based, On-premises), By Traffic Data Source (Sensors, Cameras, GPS, Mobile Apps), By Traffic Data Analysis (Historical Analysis, Real-time Analysis, Predictive Analysis), By Industry Vertical (Transportation, City Planning, Smart Cities, Insurance) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/reports/urban-traffic-analytics-market
    Explore at:
    Dataset updated
    Aug 10, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Jan 8, 2024
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202327.48(USD Billion)
    MARKET SIZE 202433.54(USD Billion)
    MARKET SIZE 2032165.05(USD Billion)
    SEGMENTS COVEREDDeployment Type ,Traffic Data Source ,Traffic Data Analysis ,Industry Vertical ,Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICS1 Rising Urbanization 2 Increasing Traffic Congestion 3 Growing Need for Smart Mobility Solutions 4 Advancements in Data Analytics Technologies 5 Government Initiatives
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDEricsson ,Intel Corporation ,Huawei Technologies Co., Ltd. ,Oracle Corporation ,Siemens AG ,Qualcomm Technologies, Inc. ,Nvidia Corporation ,SAP SE ,Microsoft Corporation ,TomTom International BV ,HERE Technologies ,Waymo LLC ,IBM Corporation ,Alphabet Inc. ,Cisco Systems, Inc.
    MARKET FORECAST PERIOD2025 - 2032
    KEY MARKET OPPORTUNITIES1 RealTime Traffic Monitoring 2 Predictive Analytics 3 Smart City Development 4 Public Transportation Optimization 5 Congestion Mitigation
    COMPOUND ANNUAL GROWTH RATE (CAGR) 22.04% (2025 - 2032)
  5. R

    Real-Time Traffic Data Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Real-Time Traffic Data Report [Dataset]. https://www.datainsightsmarket.com/reports/real-time-traffic-data-1389420
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global real-time traffic data market, valued at USD 36,900 million in 2025, is projected to reach USD 102,400 million by 2033, exhibiting a CAGR of 12.5% during the forecast period. The increasing adoption of smart transportation systems, rising urbanization, and growing demand for fleet management solutions drive market growth. Additionally, the widespread use of smartphones and the integration of GPS technology into vehicles are contributing to the generation of vast amounts of real-time traffic data. These factors indicate a promising future for the market, with continued growth expected in the coming years. Various types of real-time traffic data are available in the market, including traffic data, mobility data, and car traffic data. The traffic data segment accounted for the largest market share in 2025 and is anticipated to maintain dominance throughout the forecast period. Increasing government initiatives to improve traffic management and reduce congestion are key drivers behind the growth of this segment. Moreover, the rising demand for navigation and location-based services among consumers is boosting the market for real-time traffic data. Prominent companies in the market include TomTom, Otonomo, Datarade, HERE, Live Traffic Data, Mapbox, Intellias, INRIX, Factori, Gravy Analytics, PREDIK, Pixta, Datalastic, Grepsr, and SafeGraph. These companies offer a range of solutions and services to cater to the diverse needs of various industries and applications.

  6. R

    Real-Time Traffic Data Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Real-Time Traffic Data Report [Dataset]. https://www.datainsightsmarket.com/reports/real-time-traffic-data-1410148
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The real-time traffic data market, currently valued at $36.9 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 12.5% from 2025 to 2033. This significant expansion is fueled by several key factors. The increasing adoption of connected vehicles and the rise of smart city initiatives are driving demand for accurate and timely traffic information. Furthermore, the logistics and transportation sectors heavily rely on real-time data for efficient route optimization, delivery scheduling, and fleet management, contributing substantially to market growth. Government agencies are also significant consumers, leveraging this data for urban planning, traffic management, and emergency response systems. The market is segmented by application (Government, Logistics, Infrastructure Construction, Automobile, and Other) and data type (Traffic Data, Mobility Data, Car Traffic Data), with the Government and Logistics segments exhibiting particularly strong growth potential due to their increasing reliance on data-driven decision-making. Technological advancements such as improved sensor technologies and the development of sophisticated analytical tools are further enhancing the capabilities and accuracy of real-time traffic data solutions. Competitive dynamics within the real-time traffic data market are characterized by a mix of established players and emerging technology companies. Key players like TomTom, HERE Technologies, and INRIX are leveraging their existing mapping and navigation expertise to provide comprehensive real-time traffic data solutions. However, newer companies are entering the market with innovative data aggregation and analysis techniques, leading to increased competition and potentially lower prices. The geographic distribution of market share is expected to be dominated by North America and Europe initially, given the higher adoption rates of smart city technologies and connected vehicle infrastructure in these regions. However, rapid infrastructure development and increasing urbanization in Asia-Pacific are projected to drive substantial market growth in this region over the forecast period. The market's continued growth hinges on continued investment in smart city infrastructure, the expanding adoption of connected car technology, and the continuous development of more sophisticated data analytics.

  7. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  8. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  9. O

    Traffic Counts at Permanent stations

    • data.calgary.ca
    application/rdfxml +5
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The City of Calgary (2025). Traffic Counts at Permanent stations [Dataset]. https://data.calgary.ca/Transportation-Transit/Traffic-Counts-at-Permanent-stations/vuyp-sbjp
    Explore at:
    application/rssxml, xml, json, csv, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    The City of Calgary
    Description

    Permanent counts stations are used in trend analysis of traffic patterns around the city. The stations allow us to create seasonal and weekly variations for traffic data so that we can normalize any portable studies that are of short duration.

  10. o

    Urban Traffic Speed Dataset Of Guangzhou, China

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Mar 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chen Xinyu; Chen Yixian; He Zhaocheng (2018). Urban Traffic Speed Dataset Of Guangzhou, China [Dataset]. http://doi.org/10.5281/zenodo.1205221
    Explore at:
    Dataset updated
    Mar 22, 2018
    Authors
    Chen Xinyu; Chen Yixian; He Zhaocheng
    Area covered
    Guangzhou, China
    Description

    This is an urban traffic speed dataset which consists of 214 anonymous road segments (mainly consist of urban expressways and arterials) within two months (i.e., 61 days from August 1, 2016 to September 30, 2016) at 10-minute interval, and the speed observations were collected from Guangzhou, China. In practice, it can be used to evaluate several missing data recovery, short-term traffic prediction and traffic pattern discovery methods. According to the spatial and temporal attributes, we can easily derive a third-order tensor as (\mathcal{X}\in\mathbb{R}^{214\times 61\times 144}) and its dimensions include road segment, day and time window (see the file tensor.mat). The total number of speed observations (or non-zero entries of the tensor (\mathcal{X})) is (1,855,589). If the dataset is complete, then we have (214\times 61\times 144=1,879,776) observations, therefore, the original missing rate of this dataset is (1.29\%). Note that the file traffic_speed_data.csv is the original traffic speed data with four columns including road segment attribute, day attribute, time window attribute and traffic speed value. The file day_information_table.csv is a table referring to the specific date, and the file time_information_table.csv is a table expressing time window with start time and end time information. {"references": ["Xinyu Chen, Zhaocheng He, Jiawei Wang, 2018. Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition. Transportation Research Part C: Emerging Technologies, 86, 59-77."]}

  11. A

    Traffic-Related Data

    • data.boston.gov
    html, pdf
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Transportation Department (2021). Traffic-Related Data [Dataset]. https://data.boston.gov/dataset/traffic-related-data
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Boston Transportation Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.

    ~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.

    ~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.

    ~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.

  12. Traffic data from AI Video Analytics System of CCTVs

    • data.gov.hk
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2024). Traffic data from AI Video Analytics System of CCTVs [Dataset]. https://data.gov.hk/en-data/dataset/hk-td-tis_32-traffic-data-aivas
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    data.gov.hk
    Description

    Traffic data from AI Video Analytics System including traffic volume and traffic speed in API format.

  13. U

    Urban Traffic Analytics Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Urban Traffic Analytics Report [Dataset]. https://www.datainsightsmarket.com/reports/urban-traffic-analytics-1407019
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The urban traffic analytics market is experiencing robust growth, driven by the increasing need for efficient urban planning and the proliferation of connected vehicles and smart city initiatives. The market's expansion is fueled by the urgent demand to alleviate congestion, improve safety, and optimize resource allocation in rapidly growing urban areas. Advanced analytics techniques, leveraging data from various sources like GPS trackers, traffic cameras, and social media, provide valuable insights into traffic patterns, enabling city planners and transportation authorities to make data-driven decisions. This includes optimizing traffic signal timing, identifying bottlenecks, implementing intelligent transportation systems (ITS), and predicting potential traffic incidents. The market is segmented by solution type (hardware, software, services), deployment mode (cloud, on-premise), and application (traffic management, parking management, public transport optimization). Major players like Cellint Corporation, Alteryx, Oracle, and IBM are actively contributing to market innovation through the development of sophisticated analytics platforms and data visualization tools. The continued adoption of IoT devices and the increasing availability of high-quality data promise sustained market growth throughout the forecast period. This growth trajectory, however, is subject to certain restraints. Data privacy concerns, the high cost of implementation and maintenance of sophisticated analytics systems, and the lack of interoperability between different data sources can hinder broader adoption. Despite these challenges, the long-term outlook remains positive, driven by government investments in smart city projects, rising urbanization, and the continuous improvement of data analytics capabilities. The focus on real-time data processing and predictive modeling will further enhance the market’s capabilities and attract further investment, resulting in an accelerated expansion in the coming years. The market is expected to witness significant regional variations in growth, with North America and Europe leading the way due to advanced infrastructure and technological adoption.

  14. m

    Encrypted Traffic Feature Dataset for Machine Learning and Deep Learning...

    • data.mendeley.com
    Updated Dec 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zihao Wang (2022). Encrypted Traffic Feature Dataset for Machine Learning and Deep Learning based Encrypted Traffic Analysis [Dataset]. http://doi.org/10.17632/xw7r4tt54g.1
    Explore at:
    Dataset updated
    Dec 6, 2022
    Authors
    Zihao Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This traffic dataset contains a balance size of encrypted malicious and legitimate traffic for encrypted malicious traffic detection and analysis. The dataset is a secondary csv feature data that is composed of six public traffic datasets.

    Our dataset is curated based on two criteria: The first criterion is to combine widely considered public datasets which contain enough encrypted malicious or encrypted legitimate traffic in existing works, such as Malware Capture Facility Project datasets. The second criterion is to ensure the final dataset balance of encrypted malicious and legitimate network traffic.

    Based on the criteria, 6 public datasets are selected. After data pre-processing, details of each selected public dataset and the size of different encrypted traffic are shown in the “Dataset Statistic Analysis Document”. The document summarized the malicious and legitimate traffic size we selected from each selected public dataset, the traffic size of each malicious traffic type, and the total traffic size of the composed dataset. From the table, we are able to observe that encrypted malicious and legitimate traffic equally contributes to approximately 50% of the final composed dataset.

    The datasets now made available were prepared to aim at encrypted malicious traffic detection. Since the dataset is used for machine learning or deep learning model training, a sample of train and test sets are also provided. The train and test datasets are separated based on 1:4. Such datasets can be used for machine learning or deep learning model training and testing based on selected features or after processing further data pre-processing.

  15. R

    Real-Time Traffic Data Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Real-Time Traffic Data Report [Dataset]. https://www.archivemarketresearch.com/reports/real-time-traffic-data-556477
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The real-time traffic data market is experiencing robust growth, driven by the increasing need for efficient transportation management and urban planning. This market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This significant expansion is fueled by several key factors. The proliferation of connected vehicles and the rise of smart cities are generating massive volumes of traffic data, creating a high demand for real-time insights. Government agencies are increasingly leveraging this data for optimizing traffic flow, improving infrastructure, and enhancing public safety. Furthermore, the logistics and automotive sectors are benefiting from improved route planning, fleet management, and predictive maintenance capabilities enabled by real-time traffic data. The market's segmentation, encompassing various data types (traffic data, mobility data, car traffic data) and applications (government, logistics, infrastructure construction, automobile), reflects its diverse utility across multiple industries. The continued expansion of this market is expected to be driven by advancements in data analytics, the adoption of 5G technology enabling faster data transmission, and the growing integration of IoT devices in vehicles and infrastructure. However, challenges remain, including data privacy concerns, the high cost of data acquisition and processing, and the need for robust data security measures to maintain the integrity and reliability of the information. Competition among established players like TomTom, HERE, and INRIX, and the emergence of innovative startups, is likely to further shape market dynamics and accelerate innovation in data processing and analytical tools within the foreseeable future. Specific regional growth will vary, with North America and Europe currently dominating the market share, while Asia-Pacific is anticipated to experience the fastest growth due to rapid urbanization and technological advancements in the region.

  16. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Homan, Sophia
    Moran, Madeline
    Soni, Shreena
    Chan-Tin, Eric
    Ferrell, Nathan
    Honig, Joshua
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  17. d

    Traffic Analysis Zones

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Traffic Analysis Zones [Dataset]. https://catalog.data.gov/dataset/traffic-analysis-zones
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Traffic Analysis Zones (TAZ) for the COG/TPB Modeled Region from Metropolitan Washington Council of Governments. The TAZ dataset is used to join several types of zone-based transportation modeling data. For more information, visit https://plandc.dc.gov/page/traffic-analysis-zone.

  18. d

    Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C...

    • datarade.ai
    .csv, .xls
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2025). Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C Website Visitor Identity Resolution [Dataset]. https://datarade.ai/data-products/traffic-continuum-from-solution-publishing-500m-us-web-traf-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Unlock the Potential of Your Web Traffic with Advanced Data Resolution

    In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.

    Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.

    Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.

    Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.

    Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.

    Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.

    Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.

    Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.

    How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:

    Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.

    Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.

    Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.

    Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.

    Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.

    Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...

  19. d

    Area Analysis | Aggregated Foot Traffic Data | 11 Countries | GDPR-Compliant...

    • datarade.ai
    .csv, .xls, .xml
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Echo Analytics (2024). Area Analysis | Aggregated Foot Traffic Data | 11 Countries | GDPR-Compliant [Dataset]. https://datarade.ai/data-products/v2-echo-analytics-area-activity-global-coverage-11-count-echo-analytics
    Explore at:
    .csv, .xls, .xmlAvailable download formats
    Dataset updated
    Jul 6, 2024
    Dataset authored and provided by
    Echo Analytics
    Area covered
    United Kingdom, United States
    Description

    At Echo, our dedication to data curation is unmatched; we focus on providing our clients with an in-depth picture of a physical location based on activity in and around a point of interest over time. Our dataset empowers you to explore the “what” by allowing you to dig deeper into customer movement behaviors, eliminate gaps in your trade area and discover untapped potential. Leverage Echo's Activity datasets to identify new growth opportunities and gain a competitive advantage.

    This sample of our Area Activity data provides you insights into the estimated total unique visitors and visits in an area. This helps you understand frequentation dynamics over time, identify emerging trends in people movements and measure the impact of external factors on how people move across a city.

    Additional Information: - Understand the actual movement patterns of consumers without using PII data, gaining a 360-degree consumer view. Complement your online behavior knowledge with actual offline actions, and better attribute intent based on real-world behaviors. - Echo collects, cleans and updates its footfall on a daily basis. Normalization of the data occurs on a monthly basis. - We provide data aggregation on a weekly, monthly and quarterly basis. - Information about our country offering and data schema can be found here:

    1) Data Schema: https://docs.echo-analytics.com/activity/data-schema
    2) Country Availability: https://docs.echo-analytics.com/activity/country-coverage
    3) Methodology: https://docs.echo-analytics.com/activity/methodology
    

    Echo's commitment to customer service is evident in our exceptional data quality and dedicated team, providing 360° support throughout your location intelligence journey. We handle the complex tasks to deliver analysis-ready datasets to you.

    Business Needs: 1. Site Selection: Leverage footfall data to identify the best location to open a new store. By analyzing areas with high footfall you can select sites that are likely to attract more customers. 2. Urban Planning Development: City planners can use footfall data to optimize the layout and infrastructure of urban areas, guide the development of commercial areas by indicating where pedestrian traffic is heaviest, and aid in traffic management and safety measures. 3. Real Estate Investment: Leverage footfall data to identify lucrative investment opportunities and optimize property management by analyzing pedestrian traffic patterns.

  20. V

    Loudoun Traffic Analysis Zones

    • data.virginia.gov
    • catalog.data.gov
    • +9more
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County (2025). Loudoun Traffic Analysis Zones [Dataset]. https://data.virginia.gov/dataset/loudoun-traffic-analysis-zones
    Explore at:
    kml, zip, arcgis geoservices rest api, geojson, csv, htmlAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Loudoun County GIS
    Authors
    Loudoun County
    Area covered
    Loudoun County
    Description

    More Metadata

    This layer contains the geographical boundaries of the Metropolitan Washington Council of Government's Traffic Analysis Zones (TAZ) of Loudoun County, Virginia. TAZs are designed to be relatively homogeneous units with respect to population, economic, and transportation characteristics. These TAZ boundaries were delineated by Loudoun County Government and adopted by the Metropolitan Washington Council of Governments.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/real-time-traffic-data-market

Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033

Explore at:
pptx, csv, pdfAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Real Time Traffic Data Market Outlook



The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.



The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.



Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.



Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.



The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.



Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.



Component Analysis



The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems

Search
Clear search
Close search
Google apps
Main menu