Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
amazon.com is ranked #5 in US with 2.56B Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Traffic analytics, rankings, and competitive metrics for similarweb.com as of June 2025
In 2024, most of the global website traffic was still generated by humans, but bot traffic is constantly growing. Fraudulent traffic through bad bot actors accounted for 37 percent of global web traffic in the most recently measured period, representing an increase of 12 percent from the previous year. Sophistication of Bad Bots on the rise The complexity of malicious bot activity has dramatically increased in recent years. Advanced bad bots have doubled in prevalence over the past 2 years, indicating a surge in the sophistication of cyber threats. Simultaneously, the share of simple bad bots drastically increased over the last years, suggesting a shift in the landscape of automated threats. Meanwhile, areas like food and groceries, sports, gambling, and entertainment faced the highest amount of advanced bad bots, with more than 70 percent of their bot traffic affected by evasive applications. Good and bad bots across industries The impact of bot traffic varies across different sectors. Bad bots accounted for over 50 percent of the telecom and ISPs, community and society, and computing and IT segments web traffic. However, not all bot traffic is considered bad. Some of these applications help index websites for search engines or monitor website performance, assisting users throughout their online search. Therefore, areas like entertainment, food and groceries, and even areas targeted by bad bots themselves experienced notable levels of good bot traffic, demonstrating the diverse applications of benign automated systems across different sectors.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.
As of the second quarter of 2022, Shopee Philippines, an online department store and marketplace for retailers to sell their products, registered estimated monthly traffic of about ** million on its e-commerce website. Following by a considerable margin was Lazada, with an estimated online website traffic of roughly ** million visitors. Both companies lead the e-commerce market in the Philippines.
The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.
Annual average daily traffic is the total volume for the year divided by 365 days. The traffic count year is from October 1st through September 30th. Very few locations in California are actually counted continuously. Traffic Counting is generally performed by electronic counting instruments moved from location throughout the State in a program of continuous traffic count sampling. The resulting counts are adjusted to an estimate of annual average daily traffic by compensating for seasonal influence, weekly variation and other variables which may be present. Annual ADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates. planning and designing highways and other purposes.Traffic Census Program Page
Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.
Accessibility of tables
The department is currently working to make our tables accessible for our users. The data tables for these statistics are now accessible.
We would welcome any feedback on the accessibility of our tables, please email road traffic statistics.
TRA0101: https://assets.publishing.service.gov.uk/media/684963fd3a2aa5ba84d1dede/tra0101-miles-by-vehicle-type.ods">Road traffic (vehicle miles) by vehicle type in Great Britain (ODS, 58.6 KB)
TRA0102: https://assets.publishing.service.gov.uk/media/6849640f38cd4b88e2c7dab4/tra0102-miles-by-road-class.ods">Motor vehicle traffic (vehicle miles) by road class in Great Britain (ODS, 58.6 KB)
TRA0103: https://assets.publishing.service.gov.uk/media/6849642438cd4b88e2c7dab5/tra0103-miles-by-road-class-and-region.ods">Motor vehicle traffic (vehicle miles) by road class, region and country in Great Britain (ODS, 112 KB)
TRA0104: https://assets.publishing.service.gov.uk/media/68496434a970ac461a23d1d4/tra0104-miles-by-vehicle-and-road-type.ods">Road traffic (vehicle miles) by vehicle type and road class in Great Britain (ODS, 65.6 KB)
TRA0106: https://assets.publishing.service.gov.uk/media/6849644838cd4b88e2c7dab6/tra0106-miles-by-vehicle-type-and-region.ods">Motor vehicle traffic (vehicle miles) by vehicle type, region and country in Great Britain (ODS, 80.6 KB)
TRA0201: https://assets.publishing.service.gov.uk/media/6849646c7cba25f610c7daba/tra0201-km-by-vehicle-type.ods">Road traffic (vehicle kilometres) by vehicle type in Great Britain (ODS, 59.1 KB)
TRA0202: https://assets.publishing.service.gov.uk/media/6849647eb575706ea223d1de/tra0202-km-by-road-class.ods">Motor vehicle traffic (vehicle kilometres) by road class in Great Britain (ODS, 58.8 KB)
TRA0203: https://assets.publishing.service.gov.uk/media/6849648c3a2aa5ba84d1dedf/tra0203-km-by-road-class-and-region.ods">Motor vehicle traffic (vehicle kilometres) by road class, region and country in Great Britain (ODS, 121 KB)
TRA0204: https://assets.publishing.service.gov.uk/media/6849649b3a2aa5ba84d1dee0/tra0204-km-by-vehicle-and-road-type.ods">Road traffic (vehicle kilometres) by vehicle type and road class in Great Britain (ODS, 66.5 KB)
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
youtube.com is ranked #1 in KR with 42.83B Traffic. Categories: Newspapers, Online Services. Learn more about website traffic, market share, and more!
With more than 44,000 Portable Traffic Count (PTC) Stations located throughout North Carolina, Traffic Survey has adopted a collection schedule. Please see our website: https://www.ncdot.gov/projects/trafficsurvey/for further details. The data in this file was digitized referencing the available NCDOT Linear Referencing System (LRS) and is not the result of using GPS equipment in the field, nor latitude and longitude coordinates. The referencing provided is based on the 2015 Quarter 1 publication of the NCDOT Linear Referencing System (LRS). Some differences will be found when using different quarterly publications with this data set. The data provided is seasonally factored to an estimate of an annual average of daily traffic. The statistics provided are: CVRG_VLM_I: Traffic Survey's seven digit unique station identifier COUNTY: County NameROUTE: Numbered route identifier, or local name if not State maintainedLOCATION: Description of the Annual Average Daily Traffic station location AADT_2015: Estimated Annual Average Daily Traffic in vehicles per day for 2015AADT_2014: Estimated Annual Average Daily Traffic in vehicles per day for 2014AADT_2013: Estimated Annual Average Daily Traffic in vehicles per day for 2013 AADT_2012: Estimated Annual Average Daily Traffic in vehicles per day for 2012 AADT_2011: Estimated Annual Average Daily Traffic in vehicles per day for 2011 AADT_2010: Estimated Annual Average Daily Traffic in vehicles per day for 2010 AADT_2009: Estimated Annual Average Daily Traffic in vehicles per day for 2009 AADT_2008: Estimated Annual Average Daily Traffic in vehicles per day for 2008 AADT_2007: Estimated Annual Average Daily Traffic in vehicles per day for 2007 AADT_2006: Estimated Annual Average Daily Traffic in vehicles per day for 2006 AADT_2005: Estimated Annual Average Daily Traffic in vehicles per day for 2005 AADT_2004: Estimated Annual Average Daily Traffic in vehicles per day for 2004 AADT_2003: Estimated Annual Average Daily Traffic in vehicles per day for 2003 AADT_2002: Estimated Annual Average Daily Traffic in vehicles per day for 2002 Note: A value of zero in the AADT field indicates no available AADT data for that year. Please note the following: Not ALL roads have PTC stations located on them. With the exception of Interstate, NC and US routes, NCDOT County Maps refer to roads using a four digit Secondary Road Number, not a road’s local name. If additional information is needed, or an issue with the data is identified, please contact the Traffic Survey Group at 919 814-5116. Disclaimer related to the spatial accuracy of this file: Data in this file was digitized referencing the available NCDOT GIS Data Layer, LRS Arcs Shapefile Format from Quarter 1 release and is not the result of using GPS equipment in the field.North Carolina Department of Transportation shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of data, and relative positional accuracy of the data. This data cannot be construed to be a legal document.
In 2019, the Chinese marketplace Alibaba was the leading worldwide B2B e-commerce in terms of online traffic. The Alexa tool assessing the online traffic of websites put it on the top of the ranking, with a score of ***. The Russian Rosfirm and the U.S. platform Vinsuite followed in the ranking with a score of ***** and *****, respectively.
AADT represents current (most recent) Annual Average Daily Traffic on sampled road systems. This information is displayed using the Traffic Count Locations Active feature class as of the annual HPMS freeze in January. Historical AADT is found in another table. Please note that updates to this dataset are on an annual basis, therefore the data may not match ground conditions or may not be available for new roadways. Resource Contact: Christy Prentice, Traffic Forecasting & Analysis (TFA), http://www.dot.state.mn.us/tda/contacts.html#TFA
Check other metadata records in this package for more information on Annual Average Daily Traffic Locations Information.
Link to ESRI Feature Service:
Annual Average Daily Traffic Locations in Minnesota: Annual Average Daily Traffic Locations
The FDOT Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 07/12/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt.zip
The news website Tengrinews.kz had the highest average monthly traffic among the most popular local websites in Kazakhstan, having been frequented over ** million times per month in 2023. It was followed by Gismeteo.kz, a weather forecast website, with around ** million visits on average each month.
This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.
The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.
According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.
For more information, please visit MDOT Traffic Monitoring Program.
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.