Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.
The FDOT Telemetered Traffic Monitoring Site (TTMS) feature class provides information on Florida Telemetered Traffic Monitoring Site locations, as well affiliated information like KFCTR and TFCTR from the FDOT Traffic Characteristics Inventory database. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 09/20/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/DOTShapesFGDB.zip
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Global network traffic analytics Industry Overview
Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.
Want a bigger picture? Try a FREE sample of this report now!
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
Companies covered
The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.
The report offers a complete analysis of a number of companies including:
Allot
Cisco Systems
IBM
Juniper Networks
Microsoft
Symantec
Network traffic analytics market growth based on geographic regions
Americas
APAC
EMEA
With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.
Network traffic analytics market growth based on end-user
Telecom
BFSI
Healthcare
Media and entertainment
According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors such as increasing use of network traffic analytics solutions and increasing use of mobile devices at workplaces will contribute to the growth of the market shares of the telecom industry in the network traffic analytics market.
Key highlights of the global network traffic analytics market for the forecast years 2018-2022:
CAGR of the market during the forecast period 2018-2022
Detailed information on factors that will accelerate the growth of the network traffic analytics market during the next five years
Precise estimation of the global network traffic analytics market size and its contribution to the parent market
Accurate predictions on upcoming trends and changes in consumer behavior
Growth of the network traffic analytics industry across various geographies such as the Americas, APAC, and EMEA
A thorough analysis of the market’s competitive landscape and detailed information on several vendors
Comprehensive information about factors that will challenge the growth of network traffic analytics companies
Get more value with Technavio’s INSIGHTS subscription platform! Gain easy access to all of Technavio’s reports, along with on-demand services. Try the demo
This market research report analyzes the market outlook and provides a list of key trends, drivers, and challenges that are anticipated to impact the global network traffic analytics market and its stakeholders over the forecast years.
The global network traffic analytics market analysts at Technavio have also considered how the performance of other related markets in the vertical will impact the size of this market till 2022. Some of the markets most likely to influence the growth of the network traffic analytics market over the coming years are the Global Network as a Service Market and the Global Data Analytics Outsourcing Market.
Technavio’s collection of market research reports offer insights into the growth of markets across various industries. Additionally, we also provide customized reports based on the specific requirement of our clients.
Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.
"With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."
Congestion, Traffic Average Speed, Travel TIme and Congestion Data Type Profile:
Industry Solutions include:
Use cases:
Information included:
Traffic monitoring for state highways: user manual [PDF 465 KB]
Data reuse caveats: as per license.
Data quality statement: please read the accompanying user manual, explaining:
Traffic monitoring for state highways: user manual [PDF 465 KB]
Data quality caveats: it isn’t possible to accurately capture all vehicles using dual loops. An error margin of 2% - 5% is normal. Sites with congestion or lane changing can have higher error margins.
AADT (average annual daily traffic) accuracy depends on sampling frequency.
Classification isn’t possible at single loop sites, and not all counts at dual loop sites are classified counts. The daily counts at non-continuous sites are adjusted using values from continuous sites.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.
Historical data from this feature layer extends from 2016 to present day.
Contact: Sue Taaffe
Contact E-Mail: sue_taaffe@tempe.gov
Contact Phone: 480-350-8663
Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-counts
Link to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/
Data Source: SQL Server/ArcGIS Server
Data Source Type: Geospatial
Preparation Method: N/A
Publish Frequency: As information changes
Publish Method: Automatic
This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.
The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.
According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.
For more information, please visit MDOT Traffic Monitoring Program.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance of businesses, both large and small, on digital marketing strategies. The demand for data-driven decision-making and performance optimization across various online channels is fueling the adoption of these tools. The market, estimated at $15 billion in 2025, is projected to grow at a compound annual growth rate (CAGR) of 15% through 2033, reaching approximately $45 billion. This growth is fueled by several key trends: the rise of cloud-based solutions offering greater scalability and accessibility, increasing sophistication of analytics capabilities (including AI-powered insights), and a growing need for comprehensive website performance monitoring. While the market exhibits strong growth potential, businesses face challenges including the increasing complexity of website analytics, the need for skilled personnel to interpret data effectively, and the rising costs associated with premium features and advanced analytics platforms. The segmentation reveals a significant presence of both SMEs and large enterprises leveraging the technology, with a clear preference toward cloud-based solutions due to their flexibility and cost-effectiveness. Key players such as Semrush, Ahrefs, Google Analytics, and others are actively shaping the market through continuous innovation and expansion into new markets. The geographical distribution of the market reflects a strong presence in North America and Europe, driven by higher digital maturity and adoption rates within these regions. However, significant growth opportunities exist in Asia Pacific and other emerging markets, as digital infrastructure expands and businesses increasingly prioritize online presence. The competitive landscape is characterized by a mix of established players and emerging startups, leading to continuous innovation and price competition, benefiting end users. This intense competition drives the development of advanced features such as real-time analytics, predictive modeling, and integration with other marketing tools. The ongoing evolution of digital marketing itself is a major driver, requiring the constant refinement and improvement of these analytics tools to keep pace with changes in SEO, social media, and online advertising practices. This creates a dynamic environment conducive to further market expansion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Department of Transport and Main Roads road location details (both spatial and through distance) as well as associated traffic data.
It allows users to locate themselves with respect to road section number and through distance using the spatial coordinates on the state-controlled road network.
Through distance – the distance in kilometres measured from the gazetted start point of the road section.
Note: "Road location and traffic data" resource has been updated as of June 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
out of which 20 used plaintext HTTP browsing
Traffic count data downloaded from GDOT public map here: https://gdottrafficdata.drakewell.com/publicmultinodemap.aspRetrieved Annual Statistics Reports: "All Station AADT and Truck Percent Statistics." Mapped by Lat/Long field.Retrieved and rehosted for staff use and overlay on city maps on 12/14/2018."The Georgia Department of Transportation’s Traffic Analysis and Data Application (TADA!) website presents data collected from the Georgia Traffic Monitoring Program located on the public roads in Georgia. The Website uses a dynamic mapping interface to allow the User to access data from the map as well as in a variety of report, graph, and data export formats."
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.
Content :
This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.
The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).
Dataset Columns:
No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance
Acknowledgements :
I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.
Ravikumar Gattu , Susmitha Choppadandi
Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).
**Dataset License: ** CC0: Public Domain
Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
ML techniques benefits from this Dataset :
This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :
Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.
Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.
3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Annual Average Daily Traffic (AADT) data is collected from over 8700 program count stations and 84 ATRs, located throughout Maryland. The quality control feature of the system allow data edit checks and validation for data from the 91 permanent, continuous automatic traffic recorders (ATRs) and short-term traffic counts. Program count data is collected in both directions (inventory & non-inventory) at regular locations on either a three (3) year or six (6) year cycle depending on the type of roadway. Growth factors are applied to counts which were not taken during the current year and the counts are factored based on the past yearly growth of an associated ATR. Counters are placed for 48 hours on a Monday or Tuesday and are picked up that Thursday or Friday, respectively. The ATR and toll count data is collected on a continuous basis. Toll station data is provided by the Maryland Transportation Authority (MDTA). A special numeric code was added to the AADT numbers, starting in 2006, to identify the years when the count was actually taken. The last digit represents the number of years prior to the actual count. Where “0” represents the current year when data was collected (in 2020), “1” represents the count taken in 2019, “2” represents the count taken in 2018, “3” represents the count taken in 2017 and so forth.
Annual Average Daily Traffic (AADT) data is a strategic resource for the Federal Highway Administration (FHWA), the Maryland Department of Transportation (MDOT), the Maryland Department of Transportation State Highway Administration (MDOT SHA), as well as many other Federal, State & local government agencies. The data is essential in the planning, design and operation of the statewide road system and the development & implementation of State highway improvement & safety programs. The MDOT SHA Traffic Monitoring System (TMS) is a product of the ISTEA Act of 1991, which required a traffic data program to effectively & efficiently meet MDOT SHA’s long-term traffic data monitoring & reporting requirements.
Annual Average Daily Traffic (AADT) data is updated & published on an annual basis for the prior year. This data is for the year 2024.
View the most current AADT data in the MDOT SHA Annual Average Daily Traffic (AADT) Locator
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access a zipped csv file version of this
dataset.TMS
(traffic monitoring system) daily-updated traffic counts CSVData reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new
contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
TMS
(traffic monitoring system) traffic – historic quarter hourly
This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.
The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.
According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.
For more information, please visit MDOT Traffic Monitoring Program.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook is a web traffic powerhouse: in March 2024 approximately 16.6 billion visits were measured to the Facebook.com, making it one of the most-visited websites online. In the third quarter of 2023, Facebook had nearly three billion monthly active users.
This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit in 2019. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.For more information, please visit MDOT Traffic Monitoring Program.
This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit in 2018. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.For more information, please visit MDOT Traffic Monitoring Program.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.