3 datasets found
  1. Style Transfer for Object Detection in Art

    • kaggle.com
    Updated Mar 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Kadish (2021). Style Transfer for Object Detection in Art [Dataset]. https://www.kaggle.com/datasets/davidkadish/style-transfer-for-object-detection-in-art/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 11, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    David Kadish
    Description

    Context

    Despite recent advances in object detection using deep learning neural networks, these neural networks still struggle to identify objects in art images such as paintings and drawings. This challenge is known as the cross depiction problem and it stems in part from the tendency of neural networks to prioritize identification of an object's texture over its shape. In this paper we propose and evaluate a process for training neural networks to localize objects - specifically people - in art images. We generated a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer (style-coco.tar.xz). This dataset was used to fine-tune a Faster R-CNN object detection network (2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth), which is then tested on the existing People-Art testing dataset (PeopleArt-Coco.tar.xz). The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.

    Content

    2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth: Trained object detection network (Faster-RCNN using a ResNet152 backbone pretrained on ImageNet) for use with PyTorch PeopleArt-Coco.tar.xz: People-Art dataset with COCO-formatted annotations (original at https://github.com/BathVisArtData/PeopleArt) style-coco.tar.xz: Stylized COCO dataset containing only the person category. Used to train 2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth

    Code

    The code is available on github at https://github.com/dkadish/Style-Transfer-for-Object-Detection-in-Art

    Citing

    If you are using this code or the concept of style transfer for object detection in art, please cite our paper (https://arxiv.org/abs/2102.06529):

    D. Kadish, S. Risi, and A. S. Løvlie, “Improving Object Detection in Art Images Using Only Style Transfer,” Feb. 2021.

  2. Z

    COCO dataset and neural network weights for micro-FTIR particle detection on...

    • data.niaid.nih.gov
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schowing, Thibault (2024). COCO dataset and neural network weights for micro-FTIR particle detection on filters. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10839526
    Explore at:
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    Schowing, Thibault
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The IMPTOX project has received funding from the EU's H2020 framework programme for research and innovation under grant agreement n. 965173. Imptox is part of the European MNP cluster on human health.

    More information about the project here.

    Description: This repository includes the trained weights and a custom COCO-formatted dataset used for developing and testing a Faster R-CNN R_50_FPN_3x object detector, specifically designed to identify particles in micro-FTIR filter images.

    Contents:

    Weights File (neuralNetWeights_V3.pth):

    Format: .pth

    Description: This file contains the trained weights for a Faster R-CNN model with a ResNet-50 backbone and a Feature Pyramid Network (FPN), trained for 3x schedule. These weights are specifically tuned for detecting particles in micro-FTIR filter images.

    Custom COCO Dataset (uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip):

    Format: .zip

    Description: This zip archive contains a custom COCO-formatted dataset, including JPEG images and their corresponding annotation file. The dataset consists of images of micro-FTIR filters with annotated particles.

    Contents:

    Images: JPEG format images of micro-FTIR filters.

    Annotations: A JSON file in COCO format providing detailed annotations of the particles in the images.

    Management: The dataset can be managed and manipulated using the Pycocotools library, facilitating easy integration with existing COCO tools and workflows.

    Applications: The provided weights and dataset are intended for researchers and practitioners in the field of microscopy and particle detection. The dataset and model can be used for further training, validation, and fine-tuning of object detection models in similar domains.

    Usage Notes:

    The neuralNetWeights_V3.pth file should be loaded into a PyTorch model compatible with the Faster R-CNN architecture, such as Detectron2.

    The contents of uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip should be extracted and can be used with any COCO-compatible object detection framework for training and evaluation purposes.

    Code can be found on the related Github repository.

  3. d

    Replication Data for: Training Deep Convolutional Object Detectors for...

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gandor, Tomasz (2023). Replication Data for: Training Deep Convolutional Object Detectors for Images Affected by Lossy Compression [Dataset]. http://doi.org/10.7910/DVN/UHEP3C
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gandor, Tomasz
    Description

    This collection contains the trained models and object detection results of 2 architectures found in the Detectron2 library, on the MS COCO val2017 dataset, under different JPEG compresion level Q = {5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96} (14 levels per trained model). Architectures: F50 – Faster R-CNN on ResNet-50 with FPN R50 – RetinaNet on ResNet-50 with FPN Training type: D2 – Detectron2 Model ZOO pre-trained 1x model (90.000 iterations, batch 16) STD – standard 1x training (90.000 iterations) on original train2017 dataset Q20 – 1x training (90.000 iterations) on train2017 dataset degraded to Q=20 Q40 – 1x training (90.000 iterations) on train2017 dataset degraded to Q=40 T20 – extra 1x training on top of D2 on train2017 dataset degraded to Q=20 T40 – extra 1x training on top of D2 on train2017 dataset degraded to Q=40 Model and metrics files models_FasterRCNN.tar.gz (F50-STD, F50-Q20, …) models_RetinaNet.tar.gz (R50-STD, R50-Q20, …) For every model there are 3 files: config.yaml – the Detectron2 config of the model. model_final.pth – the weights (training snapshot) in PyTorch format. metrics.json – training metrics (like time, total loss, etc.) every 20 iterations. The D2 models were not included, because they are available from the Detectron2 Model ZOO, as faster_rcnn_R_50_FPN_1x (F50-D2) and retinanet_R_50_FPN_1x (R50-D2). Result files F50-results.tar.gz – results for Faster R-CNN models (inluding D2). R50-results.tar.gz – results for RetinaNet models (inluding D2). For every model there are 14 subdirectories, e.g. evaluator_dump_R50x1_005 through evaluator_dump_R50x1_096, for each of the JPEG Q values. Each such folder contains: coco_instances_results.json – all detected objects (image id, bounding box, class index and confidence). results.json – AP metrics as computed by COCO API. Source code for processing the data The data can be processed using our code, published at: https://github.com/tgandor/urban_oculus. Additional dependencies for the source code: COCO API Detectron2

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Kadish (2021). Style Transfer for Object Detection in Art [Dataset]. https://www.kaggle.com/datasets/davidkadish/style-transfer-for-object-detection-in-art/discussion
Organization logo

Style Transfer for Object Detection in Art

Datasets and models from Kadish et. al. (2021)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 11, 2021
Dataset provided by
Kagglehttp://kaggle.com/
Authors
David Kadish
Description

Context

Despite recent advances in object detection using deep learning neural networks, these neural networks still struggle to identify objects in art images such as paintings and drawings. This challenge is known as the cross depiction problem and it stems in part from the tendency of neural networks to prioritize identification of an object's texture over its shape. In this paper we propose and evaluate a process for training neural networks to localize objects - specifically people - in art images. We generated a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer (style-coco.tar.xz). This dataset was used to fine-tune a Faster R-CNN object detection network (2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth), which is then tested on the existing People-Art testing dataset (PeopleArt-Coco.tar.xz). The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.

Content

2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth: Trained object detection network (Faster-RCNN using a ResNet152 backbone pretrained on ImageNet) for use with PyTorch PeopleArt-Coco.tar.xz: People-Art dataset with COCO-formatted annotations (original at https://github.com/BathVisArtData/PeopleArt) style-coco.tar.xz: Stylized COCO dataset containing only the person category. Used to train 2020-12-10_09-45-15_58672_resnet152_stylecoco_epoch_15.pth

Code

The code is available on github at https://github.com/dkadish/Style-Transfer-for-Object-Detection-in-Art

Citing

If you are using this code or the concept of style transfer for object detection in art, please cite our paper (https://arxiv.org/abs/2102.06529):

D. Kadish, S. Risi, and A. S. Løvlie, “Improving Object Detection in Art Images Using Only Style Transfer,” Feb. 2021.

Search
Clear search
Close search
Google apps
Main menu