Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
ger_train.csv – The German training set as CSV file.
ger_validation.csv – The German validation set as CSV file.
en_test.csv – The English test set as CSV file.
en_train.csv – The English training set as CSV file.
en_validation.csv – The English validation set as CSV file.
splitting.py – The python code for splitting a dataset into train, test and validation set.
DataSetTrans_de.csv – The final German dataset as a CSV file.
DataSetTrans_en.csv – The final English dataset as a CSV file.
translation.py – The python code for translating the cleaned dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation
pip install pandas pyarrow Example
import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])
dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
This dataset contains a comprehensive collection of waste images designed for training machine learning models to classify different types of waste materials, with a strong focus on electronic waste (e-waste) and mixed materials. The dataset includes 7 electronic device categories alongside traditional recyclable materials, making it ideal for modern waste management challenges where electronic devices constitute a significant portion of waste streams. The dataset has been carefully curated and balanced to ensure optimal performance for multi-category waste classification tasks using deep learning approaches.
The dataset includes 17 distinct waste categories covering various types of materials commonly found in waste management scenarios:
balanced_waste_images/
├── category_1/
│ ├── image_001.jpg
│ ├── image_002.jpg
│ └── ... (400 images)
├── category_2/
│ ├── image_001.jpg
│ └── ... (400 images)
└── ... (17 categories total)
Note: Dataset is not pre-split. Users need to create train/validation/test splits as needed.
Since the dataset is not pre-split, you'll need to create train/validation/test splits:
import splitfolders
# Split dataset: 80% train, 10% val, 10% test
splitfolders.ratio(
input='balanced_waste_images',
output='split_data',
seed=42,
ratio=(.8, .1, .1),
group_prefix=None,
move=False
)
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Data generators with preprocessing
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'split_data/train/',
target_size=(224, 224),
batch_size=32,
class_mode='categorical'
)
val_generator = val_datagen.flow_from_director...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data used for publication in "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Five surrogate models for flood inundation is to emulate the results of high-resolution hydrodynamic models. The surrogate models are compared based on accuracy and computational speed for three distinct case studies namely Carlisle (United Kingdom), Chowilla floodplain (Australia), and Burnett River (Australia).The dataset is structured in 5 files - "Carlisle", "Chowilla", "BurnettRV", "Comparison_results", and "Python_data". As a minimum to run the models the "Python_data" file and one of "Carlisle", "Chowilla", or "BurnettRV" are needed. We suggest to use the "Carlisle" case study for initial testing given its small size and small data requirement."Carlisle", "Chowilla", and "BurnettRV" files These files contain hydrodynamic modelling data for training and validation for each individual case study, as well as specific Python scripts for training and running the surrogate models in each case study. There are only small differences between each folder, depending on the hydrodynamic model trying to emulate and input boundary conditions (input features).Each case study file has the following folders:Geometry_data: DEM files, .npz files containing of the high-fidelity models grid (XYZ-coordinates) and areas (Same data is available for the low-fidelity model used in the LSG model), .shp files indicating location of boundaries and main flow paths (mainly used in the LSTM-SRR model). XXX_modeldata: Folder to storage trained model data for each XXX surrogate model. For example, GP_EOF_modeldata contains files used to store the trainined GP-EOF model.HD_model_data: High-fidelity (And low-fidelity) simulation results for all flood events of that case study. This folder also contains all boundary input conditions.HF_EOF_analysis: Storing of data used in the EOF analysis. EOF analysis is applied for the LSG, GP-EOF, and LSTM-EOF surrogate models. Results_data: Storing results of running the evaluation of the surrogate models.Train_test_split_data: The train-test-validation data split is the same for all surrogate models. The specific split for each cross-validation fold is stored in this folder.And Python files:YYY_event_summary, YYY_Extrap_event_summary: Files containing overview of all events, and which events are connected between the low- and high-fidelity models for each YYY case study.EOF_analysis_HFdata_preprocessing, EOF_analysis_HFdata: Preprocessing before EOF analysis and the EOF analysis of the high-fidelity data. This is used for the LSG, GP-EOF, and LSTM-EOF surrogate models.Evaluation, Evaluation_extrap: Scripts for evaluating the surrogate model for that case study and saving the results for each cross-validation fold.train_test_split: Script for splitting the flood datasets for each cross-validation fold, so all surrogate models train on the same data.XXX_training: Script for training each XXX surrogate model.XXX_preprocessing: Some surrogate models might rely on some information that needs to be generated before training. This is performed using these scripts."Comparison_results" fileFiles used for comparing surrogate models and generate the figures in the paper "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Figures are also included. "Python_data" fileFolder containing Python script with utility functions for setting up, training, and running the surrogate models, as well as for evaluating the surrogate models. This folder also contains a python_environment.yml file with all Python package versions and dependencies.This folder also contains two sub-folders:LSG_mods_and_func: Python scripts for using the LSG model. Some of these scripts are also utilized when working with the other surrogate models. SRR_method_master_Zhou2021: Scripts obtained from https://github.com/yuerongz/SRR-method. Small edits have for speed and use in this study.
Facebook
TwitterCodeParrot 🦜 Dataset Cleaned and filtered (train)
Dataset Description
A dataset of Python files from Github. It is a more filtered version of the train split codeparrot-clean-train of codeparrot-clean. The additional filters aim at detecting configuration and test files, as well as outlier files that are unlikely to help the model learn code. The first three filters are applied with a probability of 0.7:
files with a mention of "test file" or "configuration file" or… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-train-more-filtering.
Facebook
TwitterA collection of 3 referring expression datasets based off images in the COCO dataset. A referring expression is a piece of text that describes a unique object in an image. These datasets are collected by asking human raters to disambiguate objects delineated by bounding boxes in the COCO dataset.
RefCoco and RefCoco+ are from Kazemzadeh et al. 2014. RefCoco+ expressions are strictly appearance based descriptions, which they enforced by preventing raters from using location based descriptions (e.g., "person to the right" is not a valid description for RefCoco+). RefCocoG is from Mao et al. 2016, and has more rich description of objects compared to RefCoco due to differences in the annotation process. In particular, RefCoco was collected in an interactive game-based setting, while RefCocoG was collected in a non-interactive setting. On average, RefCocoG has 8.4 words per expression while RefCoco has 3.5 words.
Each dataset has different split allocations that are typically all reported in papers. The "testA" and "testB" sets in RefCoco and RefCoco+ contain only people and only non-people respectively. Images are partitioned into the various splits. In the "google" split, objects, not images, are partitioned between the train and non-train splits. This means that the same image can appear in both the train and validation split, but the objects being referred to in the image will be different between the two sets. In contrast, the "unc" and "umd" splits partition images between the train, validation, and test split. In RefCocoG, the "google" split does not have a canonical test set, and the validation set is typically reported in papers as "val*".
Stats for each dataset and split ("refs" is the number of referring expressions, and "images" is the number of images):
| dataset | partition | split | refs | images |
|---|---|---|---|---|
| refcoco | train | 40000 | 19213 | |
| refcoco | val | 5000 | 4559 | |
| refcoco | test | 5000 | 4527 | |
| refcoco | unc | train | 42404 | 16994 |
| refcoco | unc | val | 3811 | 1500 |
| refcoco | unc | testA | 1975 | 750 |
| refcoco | unc | testB | 1810 | 750 |
| refcoco+ | unc | train | 42278 | 16992 |
| refcoco+ | unc | val | 3805 | 1500 |
| refcoco+ | unc | testA | 1975 | 750 |
| refcoco+ | unc | testB | 1798 | 750 |
| refcocog | train | 44822 | 24698 | |
| refcocog | val | 5000 | 4650 | |
| refcocog | umd | train | 42226 | 21899 |
| refcocog | umd | val | 2573 | 1300 |
| refcocog | umd | test | 5023 | 2600 |
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('ref_coco', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/ref_coco-refcoco_unc-1.1.0.png" alt="Visualization" width="500px">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Compilation of python codes for data preprocessing and VegeNet building, as well as image datasets (zip files).
Image datasets:
Facebook
TwitterWikiHow is a new large-scale dataset using the online WikiHow (http://www.wikihow.com/) knowledge base.
There are two features: - text: wikihow answers texts. - headline: bold lines as summary.
There are two separate versions: - all: consisting of the concatenation of all paragraphs as the articles and the bold lines as the reference summaries. - sep: consisting of each paragraph and its summary.
Download "wikihowAll.csv" and "wikihowSep.csv" from https://github.com/mahnazkoupaee/WikiHow-Dataset and place them in manual folder https://www.tensorflow.org/datasets/api_docs/python/tfds/download/DownloadConfig. Train/validation/test splits are provided by the authors. Preprocessing is applied to remove short articles (abstract length < 0.75 article length) and clean up extra commas.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wikihow', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
EACL Hackashop Keyword Challenge Datasets
In this repository you can find ids of articles used for the keyword extraction challenge at
EACL Hackashop on News Media Content Analysis and Automated Report Generation (http://embeddia.eu/hackashop2021/). The article ids can be used to generate train-test split used in paper:
Koloski, B., Pollak, S., Škrlj, B., & Martinc, M. (2021). Extending Neural Keyword Extraction with TF-IDF tagset matching. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, Kiev, Ukraine, pages 22–29.
Train and test splits are provided for Latvian, Estonian, Russian and Croatian.
The articles with the corresponding ID-s can be extracted from the following datasets:
- Estonian and Russian (use the eearticles2015-2019 dataset): https://www.clarin.si/repository/xmlui/handle/11356/1408
- Latvian: https://www.clarin.si/repository/xmlui/handle/11356/1409
- Croatian: https://www.clarin.si/repository/xmlui/handle/11356/1410
dataset_ids folder is organized in the following way:
- latvian – containing latvian_train.json: a json file with ids from train articles to replicate the data used in Koloski et al. (2020), the latvian_test.json: a json file with ids from test articles to replicate the data
- estonian – containing estonian_train.json: a json file with ids from train articles to replicate the data used in Koloski et al. (2020), the estonian_test.json: a json file with ids from test articles to replicate the data
- russian – containing russian_train.json: a json file with ids from train articles to replicate the train data used in Koloski et al. (2020), the russian_test.json: a json file with ids from test articles to replicate the data
- croatian - containing croatian_id_train.tsv file with sites and ids (note that just ids are not unique across dataset, therefore site information also needs to be included to obtain a unique article identifier) of articles in the train set, and the croatian_id_test.tsv file with sites and ids of articles in the test set.
In addition, scripts are provided for extracting articles (see folder parse containing scripts parse.py and build_croatian_dataset.py, requirements for scripts are pandas and bs4 Python libraries):
parse.py is used for extraction of Estonian, Russian and Latvian train and test datasets:
Instructions:
ESTONIAN-RUSSIAN
1) Retrieve the data ee_articles_2015_2019.zip
2) Create a folder 'data' and subfolder 'ee'
3) Unzip them in the 'data/ee' folder
To extract train/test Estonian articles:
run function 'build_dataset(lang="ee", opt="nat")' in the parse.py script
To extract train/test Russian articles:
run function 'build_dataset(lang="ee", opt="rus")' in the parse.py script
LATVIAN:
1) Retrieve the latvian data
2) Unzip it in 'data/lv' folder
3) To extract train/test Latvian articles:
run function 'build_dataset(lang="lv", opt="nat")' in the parse.py script
build_croatian_dataset.py is used for extraction of Croatian train and test datasets:
Instructions:
CROATIAN:
1) Retrieve the Croatian data (file 'STY_24sata_articles_hr_PUB-01.csv')
2) put the script 'build_croatian_dataset.py' in the same folder as the extracted data and run it (e.g., python build_croatian_dataset.py).
For additional questions: {Boshko.Koloski,Matej.Martinc,Senja.Pollak}@ijs.si
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides image segmentation data for feral cats, designed for computer vision and machine learning tasks. It builds upon the original public domain dataset by Paul Cashman from Roboflow, with additional preprocessing and multiple data formats for easier consumption.
The dataset is organized into three standard splits: - Train set - Validation set - Test set
Each split contains data in multiple formats: 1. Original JPG images 2. Segmentation mask JPG images 3. Parquet files containing flattened image and mask data 4. Pickle files containing serialized image and mask data
train/: Original training imagesvalid/: Original validation imagestest/: Original test imagestrain_mask/: Corresponding segmentation masks for trainingvalid_mask/: Corresponding segmentation masks for validationtest_mask/: Corresponding segmentation masks for testingtrain_dataset.parquet, valid_dataset.parquet, test_dataset.parquetsplit_at = image_size[0] * image_size[1] * image_channels
[-1, 224, 224, 3])[-1, 224, 224, 1])train_dataset.pkl, valid_dataset.pkl, test_dataset.pklsplit_at = image_size[0] * image_size[1] * image_channelstrain_dataset.csv, valid_dataset.csv, test_dataset.csvAll images were preprocessed with the following operations: - Resized to 224×224 pixels using bilinear interpolation - Segmentation masks were also resized to match the images using nearest neighbor interpolation - Original RLE (Run-Length Encoding) segmentation data converted to binary masks
When used with the provided PyTorch dataset class, images are normalized with: - Mean: [0.48235, 0.45882, 0.40784] - Standard Deviation: [0.00392156862745098, 0.00392156862745098, 0.00392156862745098]
A custom CatDataset class is included for easy integration with PyTorch:
from cat_dataset import CatDataset
# Load from parquet format
dataset = CatDataset(
root="path/to/dataset",
split="train", # Options: "train", "valid", "test"
format="parquet", # Options: "parquet", "pkl"
image_size=[224, 224],
image_channels=3,
mask_channels=1
)
# Use with PyTorch DataLoader
from torch.utils.data import DataLoader
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
Loading time benchmarks from the original implementation: - Parquet format: ~1.29 seconds per iteration - Pickle format: ~0.71 seconds per iteration
The pickle format provides the fastest loading times and is recommended for most use cases.
If you use this dataset in your research or projects, please cite:
@misc{feral-cat-segmentation_dataset,
title = {feral-cat-segmentation Dataset},
type = {Open Source Dataset},
author = {Paul Cashman},
howpublished = {\url{https://universe.roboflow.com/paul-cashman-mxgwb/feral-cat-segmentation}},
url = {https://universe.roboflow.com/paul-cashman-mxgwb/feral-cat-segmentation},
journal = {Roboflow Universe},
publisher = {Roboflow},
year = {2025},
month = {mar},
note = {visited on 2025-03-19},
}
from ca...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://i.imgur.com/eEWi4PT.png" alt="EgoHands Dataset">
The EgoHands dataset is a collection of 4800 annotated images of human hands from a first-person view originally collected and labeled by Sven Bambach, Stefan Lee, David Crandall, and Chen Yu of Indiana University.
The dataset was captured via frames extracted from video recorded through head-mounted cameras on a Google Glass headset while peforming four activities: building a puzzle, playing chess, playing Jenga, and playing cards. There are 100 labeled frames for each of 48 video clips.
The original EgoHands dataset was labeled with polygons for segmentation and released in a Matlab binary format. We converted it to an object detection dataset using a modified version of this script from @molyswu and have archived it in many popular formats for use with your computer vision models.
After converting to bounding boxes for object detection, we noticed that there were several dozen unlabeled hands. We added these by hand and improved several hundred of the other labels that did not fully encompass the hands (usually to include omitted fingertips, knuckles, or thumbs). In total, 344 images' annotations were edited manually.
We chose a new random train/test split of 80% training, 10% validation, and 10% testing. Notably, this is not the same split as in the original EgoHands paper.
There are two versions of the converted dataset available:
* specific is labeled with four classes: myleft, myright, yourleft, yourright representing which hand of which person (the viewer or the opponent across the table) is contained in the bounding box.
* generic contains the same boxes but with a single hand class.
The authors have graciously allowed Roboflow to re-host this derivative dataset. It is released under a Creative Commons by Attribution 4.0 license. You may use it for academic or commercial purposes but must cite the original paper.
Please use the following Bibtext:
@inproceedings{egohands2015iccv,
title = {Lending A Hand: Detecting Hands and Recognizing Activities in Complex Egocentric Interactions},
author = {Sven Bambach and Stefan Lee and David Crandall and Chen Yu},
booktitle = {IEEE International Conference on Computer Vision (ICCV)},
year = {2015}
}
Facebook
TwitterClean-up text for 40+ Wikipedia languages editions of pages correspond to entities. The datasets have train/dev/test splits per language. The dataset is cleaned up by page filtering to remove disambiguation pages, redirect pages, deleted pages, and non-entity pages. Each example contains the wikidata id of the entity, and the full Wikipedia article after page processing that removes non-content sections and structured objects. The language models trained on this corpus - including 41 monolingual models, and 2 multilingual models - can be found at https://tfhub.dev/google/collections/wiki40b-lm/1.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wiki40b', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research Domain/Project:
This dataset is part of the Tour Recommendation System project, which focuses on predicting user preferences and ratings for various tourist places and events. It belongs to the field of Machine Learning, specifically applied to Recommender Systems and Predictive Analytics.
Purpose:
The dataset serves as the training and evaluation data for a Decision Tree Regressor model, which predicts ratings (from 1-5) for different tourist destinations based on user preferences. The model can be used to recommend places or events to users based on their predicted ratings.
Creation Methodology:
The dataset was originally collected from a tourism platform where users rated various tourist places and events. The data was preprocessed to remove missing or invalid entries (such as #NAME? in rating columns). It was then split into subsets for training, validation, and testing the model.
Structure of the Dataset:
The dataset is stored as a CSV file (user_ratings_dataset.csv) and contains the following columns:
place_or_event_id: Unique identifier for each tourist place or event.
rating: Rating given by the user, ranging from 1 to 5.
The data is split into three subsets:
Training Set: 80% of the dataset used to train the model.
Validation Set: A small portion used for hyperparameter tuning.
Test Set: 20% used to evaluate model performance.
Folder and File Naming Conventions:
The dataset files are stored in the following structure:
user_ratings_dataset.csv: The original dataset file containing user ratings.
tour_recommendation_model.pkl: The saved model after training.
actual_vs_predicted_chart.png: A chart comparing actual and predicted ratings.
Software Requirements:
To open and work with this dataset, the following software and libraries are required:
Python 3.x
Pandas for data manipulation
Scikit-learn for training and evaluating machine learning models
Matplotlib for chart generation
Joblib for saving and loading the trained model
The dataset can be opened and processed using any Python environment that supports these libraries.
Additional Resources:
The model training code, README file, and performance chart are available in the project repository.
For detailed explanation and code, please refer to the GitHub repository (or any other relevant link for the code).
Dataset Reusability:
The dataset is structured for easy use in training machine learning models for recommendation systems. Researchers and practitioners can utilize it to:
Train other types of models (e.g., regression, classification).
Experiment with different features or add more metadata to enrich the dataset.
Data Integrity:
The dataset has been cleaned and preprocessed to remove invalid values (such as #NAME? or missing ratings). However, users should ensure they understand the structure and the preprocessing steps taken before reusing it.
Licensing:
The dataset is provided under the CC BY 4.0 license, which allows free usage, distribution, and modification, provided that proper attribution is given.
Facebook
TwitterThe goal of introducing the Rescaled CIFAR-10 dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.
The Rescaled CIFAR-10 dataset was introduced in the paper:
[1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.
with a pre-print available at arXiv:
[2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.
Importantly, the Rescaled CIFAR-10 dataset contains substantially more natural textures and patterns than the MNIST Large Scale dataset, introduced in:
[3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2
and is therefore significantly more challenging.
The Rescaled CIFAR-10 dataset is provided on the condition that you provide proper citation for the original CIFAR-10 dataset:
[4] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., University of Toronto.
and also for this new rescaled version, using the reference [1] above.
The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.
The Rescaled CIFAR-10 dataset is generated by rescaling 32×32 RGB images of animals and vehicles from the original CIFAR-10 dataset [4]. The scale variations are up to a factor of 4. In order to have all test images have the same resolution, mirror extension is used to extend the images to size 64x64. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].
There are 10 distinct classes in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship” and “truck”. In the dataset, these are represented by integer labels in the range [0, 9].
The dataset is split into 40 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 40 000 samples from the original CIFAR-10 training set. The validation dataset, on the other hand, is formed from the final 10 000 image batch of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original CIFAR-10 test set.
The training dataset file (~5.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:
cifar10_with_scale_variations_tr40000_vl10000_te10000_outsize64-64_scte1p000_scte1p000.h5
Additionally, for the Rescaled CIFAR-10 dataset, there are 9 datasets (~1 GB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:
cifar10_with_scale_variations_te10000_outsize64-64_scte0p500.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p595.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p707.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p841.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p000.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p189.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p414.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p682.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte2p000.h5
These dataset files were used for the experiments presented in Figures 9, 10, 15, 16, 20 and 24 in [1].
The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.
The training dataset can be loaded in Python as:
with h5py.File(`
x_train = np.array( f["/x_train"], dtype=np.float32)
x_val = np.array( f["/x_val"], dtype=np.float32)
x_test = np.array( f["/x_test"], dtype=np.float32)
y_train = np.array( f["/y_train"], dtype=np.int32)
y_val = np.array( f["/y_val"], dtype=np.int32)
y_test = np.array( f["/y_test"], dtype=np.int32)
We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:
x_train = np.transpose(x_train, (0, 3, 1, 2))
x_val = np.transpose(x_val, (0, 3, 1, 2))
x_test = np.transpose(x_test, (0, 3, 1, 2))
The test datasets can be loaded in Python as:
with h5py.File(`
x_test = np.array( f["/x_test"], dtype=np.float32)
y_test = np.array( f["/y_test"], dtype=np.int32)
The test datasets can be loaded in Matlab as:
x_test = h5read(`
The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.
Facebook
TwitterThe dataset contains pairs table-question, and the respective answer. The questions require multi-step reasoning and various data operations such as comparison, aggregation, and arithmetic computation. The tables were randomly selected among Wikipedia tables with at least 8 rows and 5 columns.
(As per the documentation usage notes)
Dev: Mean accuracy over three (not five) splits of the training data. In other words, train on 'split-{1,2,3}-train' and test on 'split-{1,2,3}-dev', respectively, then average the accuracy.
Test: Train on 'train' and test on 'test'.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wiki_table_questions', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data from an NIH HTS of 17K compounds against five isozymes of cytochrome P450 screening for inhibition. The activity score is taken from the NIH assay and merged with all the 2-D descriptors from the program Molecular Operating Environment (MOE). The datasets are separated by isozyme and then balanced between actives and inactives. Finally the balanced datasets are subject to an 80/20 training/test split. Link to python script of data manipulation...
Facebook
TwitterThe goal of introducing the Rescaled Fashion-MNIST dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.
The Rescaled Fashion-MNIST dataset was introduced in the paper:
[1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.
with a pre-print available at arXiv:
[2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.
Importantly, the Rescaled Fashion-MNIST dataset is more challenging than the MNIST Large Scale dataset, introduced in:
[3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2.
The Rescaled Fashion-MNIST dataset is provided on the condition that you provide proper citation for the original Fashion-MNIST dataset:
[4] Xiao, H., Rasul, K., and Vollgraf, R. (2017) “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms”, arXiv preprint arXiv:1708.07747
and also for this new rescaled version, using the reference [1] above.
The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.
The Rescaled FashionMNIST dataset is generated by rescaling 28×28 gray-scale images of clothes from the original FashionMNIST dataset [4]. The scale variations are up to a factor of 4, and the images are embedded within black images of size 72x72, with the object in the frame always centred. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].
There are 10 different classes in the dataset: “T-shirt/top”, “trouser”, “pullover”, “dress”, “coat”, “sandal”, “shirt”, “sneaker”, “bag” and “ankle boot”. In the dataset, these are represented by integer labels in the range [0, 9].
The dataset is split into 50 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 50 000 samples from the original Fashion-MNIST training set. The validation dataset, on the other hand, is formed from the final 10 000 images of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original Fashion-MNIST test set.
The training dataset file (~2.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:
fashionmnist_with_scale_variations_tr50000_vl10000_te10000_outsize72-72_scte1p000_scte1p000.h5
Additionally, for the Rescaled FashionMNIST dataset, there are 9 datasets (~415 MB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p500.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p595.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p707.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p841.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p000.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p189.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p414.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p682.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte2p000.h5
These dataset files were used for the experiments presented in Figures 6, 7, 14, 16, 19 and 23 in [1].
The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.
The training dataset can be loaded in Python as:
with h5py.File(`
x_train = np.array( f["/x_train"], dtype=np.float32)
x_val = np.array( f["/x_val"], dtype=np.float32)
x_test = np.array( f["/x_test"], dtype=np.float32)
y_train = np.array( f["/y_train"], dtype=np.int32)
y_val = np.array( f["/y_val"], dtype=np.int32)
y_test = np.array( f["/y_test"], dtype=np.int32)
We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:
x_train = np.transpose(x_train, (0, 3, 1, 2))
x_val = np.transpose(x_val, (0, 3, 1, 2))
x_test = np.transpose(x_test, (0, 3, 1, 2))
The test datasets can be loaded in Python as:
with h5py.File(`
x_test = np.array( f["/x_test"], dtype=np.float32)
y_test = np.array( f["/y_test"], dtype=np.int32)
The test datasets can be loaded in Matlab as:
x_test = h5read(`
The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.
There is also a closely related Fashion-MNIST with translations dataset, which in addition to scaling variations also comprises spatial translations of the objects.
Facebook
TwitterCOCO is a large-scale object detection, segmentation, and captioning dataset.
Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91 classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('coco', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/coco-2014-1.1.0.png" alt="Visualization" width="500px">
Facebook
TwitterThe database contains 108,753 images of 397 categories, used in the Scene UNderstanding (SUN) benchmark. The number of images varies across categories, but there are at least 100 images per category.
Several configs of the dataset are made available through TFDS:
A custom (random) partition of the whole dataset with 76,128 training images, 10,875 validation images and 21,750 test images. Images have been resized to have at most 120,000 pixels, and encoded as JPEG with quality of 72.
"standard-part1-120k", "standard-part2-120k", ..., "standard-part10-120k": Each of the 10 official train/test partitions with 50 images per class in each split. Images have been resized to have at most 120,000 pixels, and encoded as JPEG with quality of 72.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('sun397', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/sun397-tfds-4.0.0.png" alt="Visualization" width="500px">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
ger_train.csv – The German training set as CSV file.
ger_validation.csv – The German validation set as CSV file.
en_test.csv – The English test set as CSV file.
en_train.csv – The English training set as CSV file.
en_validation.csv – The English validation set as CSV file.
splitting.py – The python code for splitting a dataset into train, test and validation set.
DataSetTrans_de.csv – The final German dataset as a CSV file.
DataSetTrans_en.csv – The final English dataset as a CSV file.
translation.py – The python code for translating the cleaned dataset.