Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
32.579 texts in total, 14.012 NOT hateful texts and 18.567 HATEFUL texts All duplicate values were removed Split using sklearn into 80% train and 20% temporary test (stratified label). Then split the test set using 0.50% test and validation (stratified label) Split: 80/10/10 Train set label distribution: 0 ==> 11.210, 1 ==> 14.853, 26.063 in total Validation set label distribution: 0 ==> 1.401, 1 ==> 1.857, 3.258 in total Test set label distribution: 0 ==> 1.401, 1 ==> 1.857, 3.258 in… See the full description on the dataset page: https://huggingface.co/datasets/christinacdl/hate_speech_dataset.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Prediction of Phakic Intraocular Lens Vault Using Machine Learning of Anterior Segment Optical Coherence Tomography Metrics. Authors: Kazutaka Kamiya, MD, PhD, Ik Hee Ryu, MD, MS, Tae Keun Yoo, MD, Jung Sub Kim MD, In Sik Lee, MD, PhD, Jin Kook Kim MD, Wakako Ando CO, Nobuyuki Shoji, MD, PhD, Tomofusa, Yamauchi, MD, PhD, Hitoshi Tabuchi, MD, PhD.
We hypothesize that machine learning of preoperative biometric data obtained by the As-OCT may be clinically beneficial for predicting the actual ICL vault. Therefore, we built the machine learning model using Random Forest to predict ICL vault after surgery.
This multicenter study comprised one thousand seven hundred forty-five eyes of 1745 consecutive patients (656 men and 1089 women), who underwent EVO ICL implantation (V4c and V5 Visian ICL with KS-AquaPORT) for the correction of moderate to high myopia and myopic astigmatism, and who completed at least a 1-month follow-up, at Kitasato University Hospital (Kanagawa, Japan), or at B&VIIT Eye Center (Seoul, Korea).
This data file (RFR_model(feature=12).mat) is the final trained random forest model for MATLAB 2020a.
Python version:
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor
from google.colab import auth auth.authenticate_user() from google.colab import drive drive.mount('/content/gdrive')
dataset = pd.read_csv('gdrive/My Drive/ICL/data_icl.csv') dataset.head()
y = dataset['Vault_1M'] X = dataset.drop(['Vault_1M'], axis = 1)
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=0)
parameters = {'bootstrap': True, 'min_samples_leaf': 3, 'n_estimators': 500, 'criterion': 'mae' 'min_samples_split': 10, 'max_features': 'sqrt', 'max_depth': 6, 'max_leaf_nodes': None}
RF_model = RandomForestRegressor(**parameters) RF_model.fit(train_X, train_y) RF_predictions = RF_model.predict(test_X) importance = RF_model.feature_importances_
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
32.579 texts in total, 14.012 NOT hateful texts and 18.567 HATEFUL texts All duplicate values were removed Split using sklearn into 80% train and 20% temporary test (stratified label). Then split the test set using 0.50% test and validation (stratified label) Split: 80/10/10 Train set label distribution: 0 ==> 11.210, 1 ==> 14.853, 26.063 in total Validation set label distribution: 0 ==> 1.401, 1 ==> 1.857, 3.258 in total Test set label distribution: 0 ==> 1.401, 1 ==> 1.857, 3.258 in… See the full description on the dataset page: https://huggingface.co/datasets/christinacdl/hate_speech_dataset.