Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for Alpaca
I have just performed train, test and validation split on the original dataset. Repository to reproduce this will be shared here soon. I am including the orignal Dataset card as follows.
Dataset Summary
Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better.… See the full description on the dataset page: https://huggingface.co/datasets/disham993/alpaca-train-validation-test-split.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Including the split of real and null reactions for training, validation and test
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by IMT2022053
Released under Apache 2.0
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Cross-validation is a common method to validate a QSAR model. In cross-validation, some compounds are held out as a test set, while the remaining compounds form a training set. A model is built from the training set, and the test set compounds are predicted on that model. The agreement of the predicted and observed activity values of the test set (measured by, say, R2) is an estimate of the self-consistency of the model and is sometimes taken as an indication of the predictivity of the model. This estimate of predictivity can be optimistic or pessimistic compared to true prospective prediction, depending how compounds in the test set are selected. Here, we show that time-split selection gives an R2 that is more like that of true prospective prediction than the R2 from random selection (too optimistic) or from our analog of leave-class-out selection (too pessimistic). Time-split selection should be used in addition to random selection as a standard for cross-validation in QSAR model building.
Node classification on Texas with 60%/20%/20% random splits for training/validation/test.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
https://i.imgur.com/7Xz8d5M.gif" alt="Example Image">
This is a collection of 665 images of roads with the potholes labeled. The dataset was created and shared by Atikur Rahman Chitholian as part of his undergraduate thesis and was originally shared on Kaggle.
Note: The original dataset did not contain a validation set; we have re-shuffled the images into a 70/20/10 train-valid-test split.
This dataset could be used for automatically finding and categorizing potholes in city streets so the worst ones can be fixed faster.
The dataset is provided in a wide variety of formats for various common machine learning models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Putnam-AXIOM Splits for ZIP-FIT
This repository contains the train, validation, and test splits of the Putnam-AXIOM dataset specifically for use with the ZIP-FIT methodology research. The dataset is split as follows:
train: 150 examples validation: 150 examples test: 222 examples
These splits are derived from the original 522 Putnam problems found in the main Putnam-AXIOM repository.
Main Repository
The full dataset with original problems and variations is available… See the full description on the dataset page: https://huggingface.co/datasets/zipfit/Putnam-AXIOM-for-zip-fit-splits.
Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label "match" or "no match") for four product categories, computers, cameras, watches and shoes.
In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web via weak supervision.
The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites.
Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an open source - publicly available dataset which can be found at https://shahariarrabby.github.io/ekush/ . We split the dataset into three sets - train, validation, and test. For our experiments, we created two other versions of the dataset. We have applied 10-fold cross validation on the train set and created ten folds. We also created ten bags of datasets using bootstrap aggregating method on the train and validation sets. Lastly, we created another dataset using pre-trained ResNet50 model as feature extractor. On the features extracted by ResNet50 we have applied PCA and created a tabilar dataset containing 80 features. pca_features.csv is the train set and pca_test_features.csv is the test set. Fold.tar.gz contains the ten folds of images described above. Those folds are also been compressed. Similarly, Bagging.tar.gz contains the ten compressed bags of images. The original train, validation, and test sets are in Train.tar.gz, Validation.tar.gz, and Test.tar.gz, respectively. The compression has been performed for speeding up the upload and download purpose and mostly for the sake of convenience. If anyone has any question about how the datasets are organized please feel free to ask me at shiblygnr@gmail.com .I will get back to you in earliest time possible.
Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label “match” or “no match”) for four product categories, computers, cameras, watches and shoes. In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web weak supervision. The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites. For more information and download links for the corpus itself, please follow the links below.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data for temporal validity change prediction, an NLP task that will be defined in an upcoming publication. The dataset consists of five columns.
The duration labels (context_only_tv, combined_tv) are class indices of the following class distribution:
[no time-sensitive information, less than one minute, 1-5 minutes, 5-15 minutes, 15-45 minutes, 45 minutes - 2 hours, 2-6 hours, more than 6 hours, 1-3 days, 3-7 days, 1-4 weeks, more than one month]
Different dataset splits are provided.
This dataset has 20 classes and each class has about 1000 documents. The data split for train/validation/test is 1600/200/200. We created 10 tasks, 2 classes per task. Since this is topic-based text classification data, the classes are very different and have little shared knowledge. As mentioned above, this application (and dataset) is mainly used to show a CL model's ability to overcome forgetting. Detailed statistics please on page https://github.com/ZixuanKe/PyContinual
To take advantage of the ever-increasing amount of structural data now available, we also trained Paragraph on a larger dataset. This new dataset was extracted from the Structural Antibody Database (SAbDab, Schneider et al., 2022) on March 31, 2022 and includes 1086 complexes which we divide into train, validation and test sets using a 60-20-20 split. Full details of both datasets are given in the Supplementary Information.
The training and validation data are subsets of the training split of the Imagenet 2012. The test set is taken from the validation split of the Imagenet 2012 dataset. Each data set includes 50 images per class.
Dataset Description
This dataset provides easier accessibility to the original MNLI dataset. We randomly choose 10% of the original validation_matched split and use it as the validation split. The remaining 90% are used for the test split. The train split remains unchanged.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
FSOCO dataset split into train (80%), validation (10%), and test (10%) set. Ready for Ultralytics YOLO training.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for Alpaca
I have just performed train, test and validation split on the original dataset. Repository to reproduce this will be shared here soon. I am including the orignal Dataset card as follows.
Dataset Summary
Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better.… See the full description on the dataset page: https://huggingface.co/datasets/disham993/alpaca-train-validation-test-split.