3 datasets found
  1. Llama 3.1 8B Correct Labels

    • kaggle.com
    zip
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jatin Mehra_666 (2025). Llama 3.1 8B Correct Labels [Dataset]. https://www.kaggle.com/datasets/jatinmehra666/llama-3-1-8b-correct-labels
    Explore at:
    zip(11853454078 bytes)Available download formats
    Dataset updated
    Aug 26, 2025
    Authors
    Jatin Mehra_666
    Description

    training Code ```Python

    from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import os import pandas as pd import numpy as np os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" TEMP_DIR = "tmp" os.makedirs(TEMP_DIR, exist_ok=True) train = pd.read_csv('input/map-charting-student-math-misunderstandings/train.csv')

    Fill missing Misconception values with 'NA'

    train.Misconception = train.Misconception.fillna('NA')

    Create a combined target label (Category:Misconception)

    train['target'] = train.Category + ":" + train.Misconception

    Encode target labels to numerical format

    le = LabelEncoder() train['label'] = le.fit_transform(train['target']) n_classes = len(le.classes_) # Number of unique target classes print(f"Train shape: {train.shape} with {n_classes} target classes") print("Train head:") train.head()

    idx = train.apply(lambda row: row.Category.split('_')[0], axis=1) == 'True' correct = train.loc[idx].copy() correct['c'] = correct.groupby(['QuestionId', 'MC_Answer']).MC_Answer.transform('count') correct = correct.sort_values('c', ascending=False) correct = correct.drop_duplicates(['QuestionId']) correct = correct[['QuestionId', 'MC_Answer']] correct['is_correct'] = 1 # Mark these as correct answers

    Merge 'is_correct' flag into the main training DataFrame

    train = train.merge(correct, on=['QuestionId', 'MC_Answer'], how='left') train.is_correct = train.is_correct.fillna(0)

    from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch

    Model_Name = "unsloth/Meta-Llama-3.1-8B-Instruct"

    model = AutoModelForSequenceClassification.from_pretrained(Model_Name, num_labels=n_classes, torch_dtype=torch.bfloat16, device_map="balanced", cache_dir=TEMP_DIR)

    tokenizer = AutoTokenizer.from_pretrained(Model_Name, cache_dir=TEMP_DIR)

    def format_input(row): x = "Yes" if not row['is_correct']: x = "No" return ( f"Question: {row['QuestionText']} " f"Answer: {row['MC_Answer']} " f"Correct? {x} " f"Student Explanation: {row['StudentExplanation']}" )

    train['text'] = train.apply(format_input,axis=1) print("Example prompt for our LLM:") print() print( train.text.values[0] )

    from datasets import Dataset

    Split data into training and validation sets

    train_df, val_df = train_test_split(train, test_size=0.2, random_state=42)

    Convert to Hugging Face Dataset

    COLS = ['text', 'label']

    Create clean DataFrame with the full training data

    train_df_clean = train[COLS].copy() # Use 'train' instead of 'train_df'

    Ensure labels are proper integers

    train_df_clean['label'] = train_df_clean['label'].astype(np.int64)

    Reset index to ensure clean DataFrame structure

    train_df_clean = train_df_clean.reset_index(drop=True)

    Create dataset with the full training data

    train_ds = Dataset.from_pandas(train_df_clean, preserve_index=False)

    def tokenize(batch): """Tokenizes a batch of text inputs.""" return tokenizer(batch["text"], truncation=True, max_length=256)

    Apply tokenization to the full dataset

    train_ds = train_ds.map(tokenize, batched=True, remove_columns=['text'])

    Add a new padding token

    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

    Resize the model's token embeddings to match the new tokenizer

    model.resize_token_embeddings(len(tokenizer))

    Set the pad token id in the model's config

    model.config.pad_token_id = tokenizer.pad_token_id

    2. Clear HF cache after loading

    import os from huggingface_hub import scan_cache_dir

    Then clear cache to free ~16GB

    cache_info = scan_cache_dir() cache_info.delete_revisions(*[repo.revisions for repo in cache_info.repos]).execute()

    --- Training Arguments ---

    from transformers import TrainingArguments, Trainer, DataCollatorWithPadding import tempfile import shutil

    Ensure temp directories exist

    os.makedirs(f"{TEMP_DIR}/training_output/", exist_ok=True) os.makedirs(f"{TEMP_DIR}/logs/", exist_ok=True)

    --- Training Arguments (FIXED) ---

    training_args = TrainingArguments( output_dir=f"{TEMP_DIR}/training_output/",
    do_train=True, do_eval=False, save_strategy="no", num_train_epochs=3, per_device_train_batch_size=16, learning_rate=5e-5, logging_dir=f"{TEMP_DIR}/logs/",
    logging_steps=500, bf16=True, fp16=False, report_to="none", warmup_ratio=0.1, lr_scheduler_type="cosine", dataloader_pin_memory=False, gradient_checkpointing=True,
    )

    --- Custom Metric Computation (MAP@3) ---

    def compute_map3(eval_pred): """ Computes Mean Average Precision at 3 (MAP@3) for evaluation. """ logits, labels = eval_pred probs = torch.nn.functional.softmax(torch.tensor(logits), dim=-1).numpy()

    # Get top 3 predicted class indi...
    
  2. Diabetes_Dataset_1.1

    • kaggle.com
    zip
    Updated Nov 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KIRANMAYI G 777 (2023). Diabetes_Dataset_1.1 [Dataset]. https://www.kaggle.com/datasets/kiranmayig777/diabetes-dataset-1-1/code
    Explore at:
    zip(779755 bytes)Available download formats
    Dataset updated
    Nov 2, 2023
    Authors
    KIRANMAYI G 777
    Description

    import pandas as pd import numpy as np

    PERFORMING EDA

    data.head() data.info()

    attributes_data = data.iloc[:, 1:] attributes_data

    attributes_data.describe() attributes_data.corr()

    import seaborn as sns import matplotlib.pyplot as plt

    Calculate correlation matrix

    correlation_matrix = attributes_data.corr() plt.figure(figsize=(18, 10))

    Create a heatmap

    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.show()

    CHECKING IF DATASET IS LINEAR OR NON-LINEAR

    Calculate correlations between target and predictor columns

    correlations = data.corr()['Diabetes_binary'].drop('Diabetes_binary')

    Create a bar chart

    plt.figure(figsize=(10, 6)) correlations.plot(kind='bar') plt.xlabel('Predictor Columns') plt.ylabel('Correlation values') plt.title('Correlation between Diabetes_binary and Predictors') plt.show()

    CHECKING FOR NULL AND MISSING VALUES, CLEANING THEM

    Count the number of null values in each column

    print(data.isnull().sum())

    to check for missing values in all columns

    print(data.isna().sum())

    LASSO import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, KFold

    X = data.iloc[:, 1:] y = data.iloc[:, 0] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)

    gridsearchcv is used to find the optimal combination of hyperparameters for a given model

    So, in the end, we can select the best parameters from the listed hyperparameters.

    parameters = {"alpha": np.arange(0.00001, 10, 500)}
    kfold = KFold(n_splits = 10, shuffle=True, random_state = 42) lassoReg = Lasso() lasso_cv = GridSearchCV(lassoReg, param_grid = parameters, cv = kfold) lasso_cv.fit(X, y) print("Best Params {}".format(lasso_cv.best_params_))

    column_names = list(data) column_names = column_names[1:] column_names

    lassoModel = Lasso(alpha = 0.00001) lassoModel.fit(X_train, y_train) lasso_coeff = np.abs(lassoModel.coef_)#making all coefficients positive plt.bar(column_names, lasso_coeff, color = 'orange') plt.xticks(rotation=90) plt.grid() plt.title("Feature Selection Based on Lasso") plt.xlabel("Features") plt.ylabel("Importance") plt.ylim(0, 0.16) plt.show()

    RFE from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)

    from sklearn.feature_selection import RFECV from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() rfecv = RFECV(estimator= model, step = 1, cv = 20, scoring="accuracy") rfecv = rfecv.fit(X_train, y_train)

    num_features_selected = len(rfecv.rankin_)

    Cross-validation scores

    cv_scores = rfecv.ranking_

    Plotting the number of features vs. cross-validation score

    plt.figure(figsize=(10, 6)) plt.xlabel("Number of features selected") plt.ylabel("Score (accuracy)") plt.plot(range(1, num_features_selected + 1), cv_scores, marker='o', color='r') plt.xticks(range(1, num_features_selected + 1)) # Set x-ticks to integers plt.grid() plt.title("RFECV: Number of Features vs. Score(accuracy)") plt.show()

    print("The optimal number of features:", rfecv.n_features_) print("Best features:", X_train.columns[rfecv.support_])

    PCA import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler

    X = data.drop(["Diabetes_binary"], axis=1) y = data["Diabetes_binary"]

    df1=pd.DataFrame(data = data,columns=data.columns) print(df1)

    scaling=StandardScaler() scaling.fit(df1) Scaled_data=scaling.transform(df1) principal=PCA(n_components=3) principal.fit(Scaled_data) x=principal.transform(Scaled_data) print(x.shape)

    principal.components_

    plt.figure(figsize=(10,10))

    plt.scatter(x[:,0],x[:,1],c=data['Diabetes_binary'],cmap='plasma') plt.xlabel('pc1') plt.ylabel('pc2')

    print(principal.explained_variance_ratio_)

    T-SNE from sklearn.manifold import TSNE from numpy import reshape import seaborn as sns

    tsne = TSNE(n_components=3, verbose=1, random_state=42) z = tsne.fit_transform(X)

    df = pd.DataFrame() df["y"] = y df["comp-1"] = z[:,0] df["comp-2"] = z[:,1] df["comp-3"] = z[:,2] sns.scatterplot(x="comp-1", y="comp-2", hue=df.y.tolist(), palette=sns.color_palette("husl", 2), data=df).set(title="Diabetes data T-SNE projection")

  3. movielens-20m-dataset_train_test

    • kaggle.com
    zip
    Updated May 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sas Pav (2023). movielens-20m-dataset_train_test [Dataset]. https://www.kaggle.com/saspav/movielens-20m-dataset-train-test
    Explore at:
    zip(123408611 bytes)Available download formats
    Dataset updated
    May 7, 2023
    Authors
    Sas Pav
    Description

    def train_test_split(X, train_size=0.7, user_col='userId', item_col='movieId', rating_col='rating', time_col='timestamp'): X.sort_values(by=[time_col], inplace=True) user_ids = X[user_col].unique() X_train_data = [] X_test_data = [] for user_id in tqdm_notebook(user_ids): cur_user = X[X[user_col] == user_id] idx = int(cur_user.shape[0] * train_size) X_train_data.append(cur_user[[user_col, item_col, rating_col]].iloc[:idx, :].values) X_test_data.append(cur_user[[user_col, item_col, rating_col]].iloc[idx:, :].values) X_train = pd.DataFrame(np.vstack(X_train_data), columns=[user_col, item_col, rating_col]) X_test = pd.DataFrame(np.vstack(X_test_data), columns=[user_col, item_col, rating_col]) return X_train, X_test

    # аккуратно, очень долгий процесс

    X_train, X_test = train_test_split(data)

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jatin Mehra_666 (2025). Llama 3.1 8B Correct Labels [Dataset]. https://www.kaggle.com/datasets/jatinmehra666/llama-3-1-8b-correct-labels
Organization logo

Llama 3.1 8B Correct Labels

Explore at:
zip(11853454078 bytes)Available download formats
Dataset updated
Aug 26, 2025
Authors
Jatin Mehra_666
Description

training Code ```Python

from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import os import pandas as pd import numpy as np os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" TEMP_DIR = "tmp" os.makedirs(TEMP_DIR, exist_ok=True) train = pd.read_csv('input/map-charting-student-math-misunderstandings/train.csv')

Fill missing Misconception values with 'NA'

train.Misconception = train.Misconception.fillna('NA')

Create a combined target label (Category:Misconception)

train['target'] = train.Category + ":" + train.Misconception

Encode target labels to numerical format

le = LabelEncoder() train['label'] = le.fit_transform(train['target']) n_classes = len(le.classes_) # Number of unique target classes print(f"Train shape: {train.shape} with {n_classes} target classes") print("Train head:") train.head()

idx = train.apply(lambda row: row.Category.split('_')[0], axis=1) == 'True' correct = train.loc[idx].copy() correct['c'] = correct.groupby(['QuestionId', 'MC_Answer']).MC_Answer.transform('count') correct = correct.sort_values('c', ascending=False) correct = correct.drop_duplicates(['QuestionId']) correct = correct[['QuestionId', 'MC_Answer']] correct['is_correct'] = 1 # Mark these as correct answers

Merge 'is_correct' flag into the main training DataFrame

train = train.merge(correct, on=['QuestionId', 'MC_Answer'], how='left') train.is_correct = train.is_correct.fillna(0)

from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch

Model_Name = "unsloth/Meta-Llama-3.1-8B-Instruct"

model = AutoModelForSequenceClassification.from_pretrained(Model_Name, num_labels=n_classes, torch_dtype=torch.bfloat16, device_map="balanced", cache_dir=TEMP_DIR)

tokenizer = AutoTokenizer.from_pretrained(Model_Name, cache_dir=TEMP_DIR)

def format_input(row): x = "Yes" if not row['is_correct']: x = "No" return ( f"Question: {row['QuestionText']} " f"Answer: {row['MC_Answer']} " f"Correct? {x} " f"Student Explanation: {row['StudentExplanation']}" )

train['text'] = train.apply(format_input,axis=1) print("Example prompt for our LLM:") print() print( train.text.values[0] )

from datasets import Dataset

Split data into training and validation sets

train_df, val_df = train_test_split(train, test_size=0.2, random_state=42)

Convert to Hugging Face Dataset

COLS = ['text', 'label']

Create clean DataFrame with the full training data

train_df_clean = train[COLS].copy() # Use 'train' instead of 'train_df'

Ensure labels are proper integers

train_df_clean['label'] = train_df_clean['label'].astype(np.int64)

Reset index to ensure clean DataFrame structure

train_df_clean = train_df_clean.reset_index(drop=True)

Create dataset with the full training data

train_ds = Dataset.from_pandas(train_df_clean, preserve_index=False)

def tokenize(batch): """Tokenizes a batch of text inputs.""" return tokenizer(batch["text"], truncation=True, max_length=256)

Apply tokenization to the full dataset

train_ds = train_ds.map(tokenize, batched=True, remove_columns=['text'])

Add a new padding token

tokenizer.add_special_tokens({'pad_token': '[PAD]'})

Resize the model's token embeddings to match the new tokenizer

model.resize_token_embeddings(len(tokenizer))

Set the pad token id in the model's config

model.config.pad_token_id = tokenizer.pad_token_id

2. Clear HF cache after loading

import os from huggingface_hub import scan_cache_dir

Then clear cache to free ~16GB

cache_info = scan_cache_dir() cache_info.delete_revisions(*[repo.revisions for repo in cache_info.repos]).execute()

--- Training Arguments ---

from transformers import TrainingArguments, Trainer, DataCollatorWithPadding import tempfile import shutil

Ensure temp directories exist

os.makedirs(f"{TEMP_DIR}/training_output/", exist_ok=True) os.makedirs(f"{TEMP_DIR}/logs/", exist_ok=True)

--- Training Arguments (FIXED) ---

training_args = TrainingArguments( output_dir=f"{TEMP_DIR}/training_output/",
do_train=True, do_eval=False, save_strategy="no", num_train_epochs=3, per_device_train_batch_size=16, learning_rate=5e-5, logging_dir=f"{TEMP_DIR}/logs/",
logging_steps=500, bf16=True, fp16=False, report_to="none", warmup_ratio=0.1, lr_scheduler_type="cosine", dataloader_pin_memory=False, gradient_checkpointing=True,
)

--- Custom Metric Computation (MAP@3) ---

def compute_map3(eval_pred): """ Computes Mean Average Precision at 3 (MAP@3) for evaluation. """ logits, labels = eval_pred probs = torch.nn.functional.softmax(torch.tensor(logits), dim=-1).numpy()

# Get top 3 predicted class indi...
Search
Clear search
Close search
Google apps
Main menu