Facebook
Twittertraining Code ```Python
from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import os import pandas as pd import numpy as np os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" TEMP_DIR = "tmp" os.makedirs(TEMP_DIR, exist_ok=True) train = pd.read_csv('input/map-charting-student-math-misunderstandings/train.csv')
train.Misconception = train.Misconception.fillna('NA')
train['target'] = train.Category + ":" + train.Misconception
le = LabelEncoder() train['label'] = le.fit_transform(train['target']) n_classes = len(le.classes_) # Number of unique target classes print(f"Train shape: {train.shape} with {n_classes} target classes") print("Train head:") train.head()
idx = train.apply(lambda row: row.Category.split('_')[0], axis=1) == 'True' correct = train.loc[idx].copy() correct['c'] = correct.groupby(['QuestionId', 'MC_Answer']).MC_Answer.transform('count') correct = correct.sort_values('c', ascending=False) correct = correct.drop_duplicates(['QuestionId']) correct = correct[['QuestionId', 'MC_Answer']] correct['is_correct'] = 1 # Mark these as correct answers
train = train.merge(correct, on=['QuestionId', 'MC_Answer'], how='left') train.is_correct = train.is_correct.fillna(0)
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch
Model_Name = "unsloth/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForSequenceClassification.from_pretrained(Model_Name, num_labels=n_classes, torch_dtype=torch.bfloat16, device_map="balanced", cache_dir=TEMP_DIR)
tokenizer = AutoTokenizer.from_pretrained(Model_Name, cache_dir=TEMP_DIR)
def format_input(row): x = "Yes" if not row['is_correct']: x = "No" return ( f"Question: {row['QuestionText']} " f"Answer: {row['MC_Answer']} " f"Correct? {x} " f"Student Explanation: {row['StudentExplanation']}" )
train['text'] = train.apply(format_input,axis=1) print("Example prompt for our LLM:") print() print( train.text.values[0] )
from datasets import Dataset
COLS = ['text', 'label']
train_df_clean = train[COLS].copy() # Use 'train' instead of 'train_df'
train_df_clean['label'] = train_df_clean['label'].astype(np.int64)
train_df_clean = train_df_clean.reset_index(drop=True)
train_ds = Dataset.from_pandas(train_df_clean, preserve_index=False)
def tokenize(batch): """Tokenizes a batch of text inputs.""" return tokenizer(batch["text"], truncation=True, max_length=256)
train_ds = train_ds.map(tokenize, batched=True, remove_columns=['text'])
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
import os from huggingface_hub import scan_cache_dir
cache_info = scan_cache_dir() cache_info.delete_revisions(*[repo.revisions for repo in cache_info.repos]).execute()
from transformers import TrainingArguments, Trainer, DataCollatorWithPadding import tempfile import shutil
os.makedirs(f"{TEMP_DIR}/training_output/", exist_ok=True) os.makedirs(f"{TEMP_DIR}/logs/", exist_ok=True)
training_args = TrainingArguments(
output_dir=f"{TEMP_DIR}/training_output/",
do_train=True,
do_eval=False,
save_strategy="no",
num_train_epochs=3,
per_device_train_batch_size=16,
learning_rate=5e-5,
logging_dir=f"{TEMP_DIR}/logs/",
logging_steps=500,
bf16=True,
fp16=False,
report_to="none",
warmup_ratio=0.1,
lr_scheduler_type="cosine",
dataloader_pin_memory=False,
gradient_checkpointing=True,
)
def compute_map3(eval_pred): """ Computes Mean Average Precision at 3 (MAP@3) for evaluation. """ logits, labels = eval_pred probs = torch.nn.functional.softmax(torch.tensor(logits), dim=-1).numpy()
# Get top 3 predicted class indi...
Facebook
Twitterimport pandas as pd import numpy as np
PERFORMING EDA
data.head() data.info()
attributes_data = data.iloc[:, 1:] attributes_data
attributes_data.describe() attributes_data.corr()
import seaborn as sns import matplotlib.pyplot as plt
correlation_matrix = attributes_data.corr() plt.figure(figsize=(18, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.show()
CHECKING IF DATASET IS LINEAR OR NON-LINEAR
correlations = data.corr()['Diabetes_binary'].drop('Diabetes_binary')
plt.figure(figsize=(10, 6)) correlations.plot(kind='bar') plt.xlabel('Predictor Columns') plt.ylabel('Correlation values') plt.title('Correlation between Diabetes_binary and Predictors') plt.show()
CHECKING FOR NULL AND MISSING VALUES, CLEANING THEM
print(data.isnull().sum())
print(data.isna().sum())
LASSO import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, KFold
X = data.iloc[:, 1:] y = data.iloc[:, 0] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)
parameters = {"alpha": np.arange(0.00001, 10, 500)}
kfold = KFold(n_splits = 10, shuffle=True, random_state = 42)
lassoReg = Lasso()
lasso_cv = GridSearchCV(lassoReg, param_grid = parameters, cv = kfold)
lasso_cv.fit(X, y)
print("Best Params {}".format(lasso_cv.best_params_))
column_names = list(data) column_names = column_names[1:] column_names
lassoModel = Lasso(alpha = 0.00001) lassoModel.fit(X_train, y_train) lasso_coeff = np.abs(lassoModel.coef_)#making all coefficients positive plt.bar(column_names, lasso_coeff, color = 'orange') plt.xticks(rotation=90) plt.grid() plt.title("Feature Selection Based on Lasso") plt.xlabel("Features") plt.ylabel("Importance") plt.ylim(0, 0.16) plt.show()
RFE from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)
from sklearn.feature_selection import RFECV from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() rfecv = RFECV(estimator= model, step = 1, cv = 20, scoring="accuracy") rfecv = rfecv.fit(X_train, y_train)
num_features_selected = len(rfecv.rankin_)
cv_scores = rfecv.ranking_
plt.figure(figsize=(10, 6)) plt.xlabel("Number of features selected") plt.ylabel("Score (accuracy)") plt.plot(range(1, num_features_selected + 1), cv_scores, marker='o', color='r') plt.xticks(range(1, num_features_selected + 1)) # Set x-ticks to integers plt.grid() plt.title("RFECV: Number of Features vs. Score(accuracy)") plt.show()
print("The optimal number of features:", rfecv.n_features_) print("Best features:", X_train.columns[rfecv.support_])
PCA import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler
X = data.drop(["Diabetes_binary"], axis=1) y = data["Diabetes_binary"]
df1=pd.DataFrame(data = data,columns=data.columns) print(df1)
scaling=StandardScaler() scaling.fit(df1) Scaled_data=scaling.transform(df1) principal=PCA(n_components=3) principal.fit(Scaled_data) x=principal.transform(Scaled_data) print(x.shape)
principal.components_
plt.scatter(x[:,0],x[:,1],c=data['Diabetes_binary'],cmap='plasma') plt.xlabel('pc1') plt.ylabel('pc2')
print(principal.explained_variance_ratio_)
T-SNE from sklearn.manifold import TSNE from numpy import reshape import seaborn as sns
tsne = TSNE(n_components=3, verbose=1, random_state=42) z = tsne.fit_transform(X)
df = pd.DataFrame() df["y"] = y df["comp-1"] = z[:,0] df["comp-2"] = z[:,1] df["comp-3"] = z[:,2] sns.scatterplot(x="comp-1", y="comp-2", hue=df.y.tolist(), palette=sns.color_palette("husl", 2), data=df).set(title="Diabetes data T-SNE projection")
Facebook
Twitterdef train_test_split(X, train_size=0.7, user_col='userId', item_col='movieId', rating_col='rating', time_col='timestamp'): X.sort_values(by=[time_col], inplace=True) user_ids = X[user_col].unique() X_train_data = [] X_test_data = [] for user_id in tqdm_notebook(user_ids): cur_user = X[X[user_col] == user_id] idx = int(cur_user.shape[0] * train_size) X_train_data.append(cur_user[[user_col, item_col, rating_col]].iloc[:idx, :].values) X_test_data.append(cur_user[[user_col, item_col, rating_col]].iloc[idx:, :].values) X_train = pd.DataFrame(np.vstack(X_train_data), columns=[user_col, item_col, rating_col]) X_test = pd.DataFrame(np.vstack(X_test_data), columns=[user_col, item_col, rating_col]) return X_train, X_test
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twittertraining Code ```Python
from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import os import pandas as pd import numpy as np os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" TEMP_DIR = "tmp" os.makedirs(TEMP_DIR, exist_ok=True) train = pd.read_csv('input/map-charting-student-math-misunderstandings/train.csv')
train.Misconception = train.Misconception.fillna('NA')
train['target'] = train.Category + ":" + train.Misconception
le = LabelEncoder() train['label'] = le.fit_transform(train['target']) n_classes = len(le.classes_) # Number of unique target classes print(f"Train shape: {train.shape} with {n_classes} target classes") print("Train head:") train.head()
idx = train.apply(lambda row: row.Category.split('_')[0], axis=1) == 'True' correct = train.loc[idx].copy() correct['c'] = correct.groupby(['QuestionId', 'MC_Answer']).MC_Answer.transform('count') correct = correct.sort_values('c', ascending=False) correct = correct.drop_duplicates(['QuestionId']) correct = correct[['QuestionId', 'MC_Answer']] correct['is_correct'] = 1 # Mark these as correct answers
train = train.merge(correct, on=['QuestionId', 'MC_Answer'], how='left') train.is_correct = train.is_correct.fillna(0)
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch
Model_Name = "unsloth/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForSequenceClassification.from_pretrained(Model_Name, num_labels=n_classes, torch_dtype=torch.bfloat16, device_map="balanced", cache_dir=TEMP_DIR)
tokenizer = AutoTokenizer.from_pretrained(Model_Name, cache_dir=TEMP_DIR)
def format_input(row): x = "Yes" if not row['is_correct']: x = "No" return ( f"Question: {row['QuestionText']} " f"Answer: {row['MC_Answer']} " f"Correct? {x} " f"Student Explanation: {row['StudentExplanation']}" )
train['text'] = train.apply(format_input,axis=1) print("Example prompt for our LLM:") print() print( train.text.values[0] )
from datasets import Dataset
COLS = ['text', 'label']
train_df_clean = train[COLS].copy() # Use 'train' instead of 'train_df'
train_df_clean['label'] = train_df_clean['label'].astype(np.int64)
train_df_clean = train_df_clean.reset_index(drop=True)
train_ds = Dataset.from_pandas(train_df_clean, preserve_index=False)
def tokenize(batch): """Tokenizes a batch of text inputs.""" return tokenizer(batch["text"], truncation=True, max_length=256)
train_ds = train_ds.map(tokenize, batched=True, remove_columns=['text'])
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
import os from huggingface_hub import scan_cache_dir
cache_info = scan_cache_dir() cache_info.delete_revisions(*[repo.revisions for repo in cache_info.repos]).execute()
from transformers import TrainingArguments, Trainer, DataCollatorWithPadding import tempfile import shutil
os.makedirs(f"{TEMP_DIR}/training_output/", exist_ok=True) os.makedirs(f"{TEMP_DIR}/logs/", exist_ok=True)
training_args = TrainingArguments(
output_dir=f"{TEMP_DIR}/training_output/",
do_train=True,
do_eval=False,
save_strategy="no",
num_train_epochs=3,
per_device_train_batch_size=16,
learning_rate=5e-5,
logging_dir=f"{TEMP_DIR}/logs/",
logging_steps=500,
bf16=True,
fp16=False,
report_to="none",
warmup_ratio=0.1,
lr_scheduler_type="cosine",
dataloader_pin_memory=False,
gradient_checkpointing=True,
)
def compute_map3(eval_pred): """ Computes Mean Average Precision at 3 (MAP@3) for evaluation. """ logits, labels = eval_pred probs = torch.nn.functional.softmax(torch.tensor(logits), dim=-1).numpy()
# Get top 3 predicted class indi...