100+ datasets found
  1. Machine learning algorithm validation with a limited sample size

    • plos.figshare.com
    text/x-python
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

  2. DRIVE Train/Validation Split Dataset

    • kaggle.com
    Updated Feb 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sovit Ranjan Rath (2023). DRIVE Train/Validation Split Dataset [Dataset]. https://www.kaggle.com/datasets/sovitrath/drive-trainvalidation-split-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sovit Ranjan Rath
    Description

    This dataset contains images and masks for Retinal Vessel Extraction (Segmentation). It contains a training and validation split to easily train semantic segmentation models.

    The original dataset can be found here => https://www.kaggle.com/datasets/andrewmvd/drive-digital-retinal-images-for-vessel-extraction

    This dataset also has an accompanying blog post => Retinal Vessel Segmentation using PyTorch Semantic Segmentation

    Split sample numbers: Training images and masks: 16 Validation images and masks: 4 Test images: 20

  3. h

    ASDiv-train-test

    • huggingface.co
    Updated Nov 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeong Seong Cheol (2025). ASDiv-train-test [Dataset]. https://huggingface.co/datasets/lejelly/ASDiv-train-test
    Explore at:
    Dataset updated
    Nov 3, 2025
    Authors
    Jeong Seong Cheol
    Description

    ASDiv (train/test 1:9)

    This dataset is derived from EleutherAI/asdiv by splitting the original validation split into train and test with a ratio of 1:9.

      Source
    

    Original dataset: EleutherAI/asdivLink: https://huggingface.co/datasets/EleutherAI/asdiv

      License
    

    Inherits the original dataset's license (CC-BY-NC-4.0) unless otherwise noted in this repository.

      Splitting Details
    

    Method: datasets.Dataset.train_test_split Source split: validation Test… See the full description on the dataset page: https://huggingface.co/datasets/lejelly/ASDiv-train-test.

  4. Data from: Web Data Commons Training and Test Sets for Large-Scale Product...

    • linkagelibrary.icpsr.umich.edu
    • da-ra.de
    Updated Nov 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph Peeters; Anna Primpeli; Christian Bizer (2020). Web Data Commons Training and Test Sets for Large-Scale Product Matching - Version 2.0 [Dataset]. http://doi.org/10.3886/E127481V1
    Explore at:
    Dataset updated
    Nov 26, 2020
    Dataset provided by
    University of Mannheim (Germany)
    Authors
    Ralph Peeters; Anna Primpeli; Christian Bizer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label “match” or “no match”) for four product categories, computers, cameras, watches and shoes. In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web weak supervision. The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites. For more information and download links for the corpus itself, please follow the links below.

  5. f

    Data from: Time-Split Cross-Validation as a Method for Estimating the...

    • acs.figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Sheridan (2023). Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction. [Dataset]. http://doi.org/10.1021/ci400084k.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    ACS Publications
    Authors
    Robert P. Sheridan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Cross-validation is a common method to validate a QSAR model. In cross-validation, some compounds are held out as a test set, while the remaining compounds form a training set. A model is built from the training set, and the test set compounds are predicted on that model. The agreement of the predicted and observed activity values of the test set (measured by, say, R2) is an estimate of the self-consistency of the model and is sometimes taken as an indication of the predictivity of the model. This estimate of predictivity can be optimistic or pessimistic compared to true prospective prediction, depending how compounds in the test set are selected. Here, we show that time-split selection gives an R2 that is more like that of true prospective prediction than the R2 from random selection (too optimistic) or from our analog of leave-class-out selection (too pessimistic). Time-split selection should be used in addition to random selection as a standard for cross-validation in QSAR model building.

  6. 1.125s Heart Sound Data TVT Split acc. 98.5%

    • kaggle.com
    zip
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raiyun Razeen Kabir (2023). 1.125s Heart Sound Data TVT Split acc. 98.5% [Dataset]. https://www.kaggle.com/datasets/razeen08/1125s-heart-sound-data-tvt-split-acc-985
    Explore at:
    zip(4217986 bytes)Available download formats
    Dataset updated
    Jul 19, 2023
    Authors
    Raiyun Razeen Kabir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Train-Validation-Test Split for 1.125sdataforheartsound dataset that achieved 98.5% test accuracy using ResNet34

    Load using

    import pickle
    
    with open('/kaggle/input/1125s-heart-sound-data-tvt-split-acc-985/split_98_5.pkl', 'rb') as f:
      data = pickle.load(f)
    
    x_train = data['x_train']
    x_test = data['x_test']
    x_val = data['x_val']
    y_train = data['y_train']
    y_test = data['y_test']
    y_val = data['y_val']
    

    Copy and edit the sample notebook tryPickle

  7. Image-dataset-FER-Test,Train,Val

    • kaggle.com
    zip
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dolly prajapati 182 (2024). Image-dataset-FER-Test,Train,Val [Dataset]. https://www.kaggle.com/datasets/dollyprajapati182/image-dataset-fer-testtrainval/code
    Explore at:
    zip(248085782 bytes)Available download formats
    Dataset updated
    Oct 8, 2024
    Authors
    dolly prajapati 182
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset is a split version of the original Image-dataset found here. The dataset consists of 8 emotion classes: angry, contempt, disgust, fear, happiness, neutral, sadness, and surprise.

    To facilitate model training and evaluation, I have organized the dataset into three subsets:

    Train: Used for training machine learning models. Test: Used to evaluate model performance after training. Validation: Used during training to tune hyperparameters and prevent overfitting.

    This split allows for more effective usage in tasks such as Facial Emotion Recognition (FER) and other emotion analysis projects.

  8. FER_my_split

    • kaggle.com
    zip
    Updated Feb 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neoklis Masmanidis (2021). FER_my_split [Dataset]. https://www.kaggle.com/neoklismasmanidis/fer-my-split
    Explore at:
    zip(88489637 bytes)Available download formats
    Dataset updated
    Feb 3, 2021
    Authors
    Neoklis Masmanidis
    Description

    Dataset

    This dataset was created by Neoklis Masmanidis

    Contents

  9. f

    Dataset

    • figshare.com
    application/x-gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moynuddin Ahmed Shibly (2023). Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.13577873.v1
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Moynuddin Ahmed Shibly
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an open source - publicly available dataset which can be found at https://shahariarrabby.github.io/ekush/ . We split the dataset into three sets - train, validation, and test. For our experiments, we created two other versions of the dataset. We have applied 10-fold cross validation on the train set and created ten folds. We also created ten bags of datasets using bootstrap aggregating method on the train and validation sets. Lastly, we created another dataset using pre-trained ResNet50 model as feature extractor. On the features extracted by ResNet50 we have applied PCA and created a tabilar dataset containing 80 features. pca_features.csv is the train set and pca_test_features.csv is the test set. Fold.tar.gz contains the ten folds of images described above. Those folds are also been compressed. Similarly, Bagging.tar.gz contains the ten compressed bags of images. The original train, validation, and test sets are in Train.tar.gz, Validation.tar.gz, and Test.tar.gz, respectively. The compression has been performed for speeding up the upload and download purpose and mostly for the sake of convenience. If anyone has any question about how the datasets are organized please feel free to ask me at shiblygnr@gmail.com .I will get back to you in earliest time possible.

  10. h

    ccisd-teks-alignment-split

    • huggingface.co
    Updated Nov 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Robson (2025). ccisd-teks-alignment-split [Dataset]. https://huggingface.co/datasets/robworks-software/ccisd-teks-alignment-split
    Explore at:
    Dataset updated
    Nov 9, 2025
    Authors
    Ryan Robson
    Area covered
    Clear Creek Independent School District
    Description

    CCISD TEKS Alignment Dataset (3-Way Split)

      Dataset Description
    

    This dataset contains the alignment between Clear Creek ISD (CCISD) curriculum and Texas Essential Knowledge and Skills (TEKS) standards. The dataset is split into training, validation, and test sets for machine learning applications.

      Dataset Summary
    

    Total Records: 428 TEKS standards Train Split: 299 records (69.9%) Validation Split: 64 records (15.0%) Test Split: 65 records (15.2%) Subject Areas:… See the full description on the dataset page: https://huggingface.co/datasets/robworks-software/ccisd-teks-alignment-split.

  11. d

    Data from: Training dataset for NABat Machine Learning V1.0

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Training dataset for NABat Machine Learning V1.0 [Dataset]. https://catalog.data.gov/dataset/training-dataset-for-nabat-machine-learning-v1-0
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.

  12. Global Wheat Detection 2020 Train/Valid/Test Split

    • kaggle.com
    zip
    Updated Dec 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sovit Ranjan Rath (2022). Global Wheat Detection 2020 Train/Valid/Test Split [Dataset]. https://www.kaggle.com/datasets/sovitrath/global-wheat-detection-2021-trainvalidtest-split
    Explore at:
    zip(630636820 bytes)Available download formats
    Dataset updated
    Dec 26, 2022
    Authors
    Sovit Ranjan Rath
    Description

    This is the Global Wheat Detection dataset with train, validation, and test split. The labels are in XML format. The training and validation sets were created randomly. The test folder only contains a few images as per the original dataset.

    Acknowledgment: https://www.kaggle.com/competitions/global-wheat-detection

  13. cardamom dataset

    • kaggle.com
    zip
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Riva Akter (2025). cardamom dataset [Dataset]. https://www.kaggle.com/rivaakter/cardamom
    Explore at:
    zip(257117575 bytes)Available download formats
    Dataset updated
    Feb 18, 2025
    Authors
    Riva Akter
    Description

    "Plant Leaf Disease Classification Dataset with Train-Test-Validation Split"

  14. Z

    Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841
    Explore at:
    Dataset updated
    Aug 8, 2022
    Authors
    Köhler, Juliane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

    Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

    ger_train.csv – The German training set as CSV file.

    ger_validation.csv – The German validation set as CSV file.

    en_test.csv – The English test set as CSV file.

    en_train.csv – The English training set as CSV file.

    en_validation.csv – The English validation set as CSV file.

    splitting.py – The python code for splitting a dataset into train, test and validation set.

    DataSetTrans_de.csv – The final German dataset as a CSV file.

    DataSetTrans_en.csv – The final English dataset as a CSV file.

    translation.py – The python code for translating the cleaned dataset.

  15. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  16. ChilliLeafDataset_TrainValTest

    • kaggle.com
    zip
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taibur Rahaman (2025). ChilliLeafDataset_TrainValTest [Dataset]. https://www.kaggle.com/datasets/taiburrahaman/chillileafdataset-trainvaltest
    Explore at:
    zip(43069840 bytes)Available download formats
    Dataset updated
    Oct 1, 2025
    Authors
    Taibur Rahaman
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Taibur Rahaman

    Released under Apache 2.0

    Contents

  17. Z

    Downsized camera trap images for automated classification

    • data.niaid.nih.gov
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Norman, Danielle L; Wearne, Oliver R; Chapman, Philip M; Heon, Sui P; Ewers, Robert M (2022). Downsized camera trap images for automated classification [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6627706
    Explore at:
    Dataset updated
    Dec 1, 2022
    Dataset provided by
    Imperial College London
    Authors
    Norman, Danielle L; Wearne, Oliver R; Chapman, Philip M; Heon, Sui P; Ewers, Robert M
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description: Downsized (256x256) camera trap images used for the analyses in "Can CNN-based species classification generalise across variation in habitat within a camera trap survey?", and the dataset composition for each analysis. Note that images tagged as 'human' have been removed from this dataset. Full-size images for the BorneoCam dataset will be made available at LILA.science. The full SAFE camera trap dataset metadata is available at DOI: 10.5281/zenodo.6627707. Project: This dataset was collected as part of the following SAFE research project: Machine learning and image recognition to monitor spatio-temporal changes in the behaviour and dynamics of species interactions Funding: These data were collected as part of research funded by:

    NERC (NERC QMEE CDT Studentship, NE/P012345/1, http://gotw.nerc.ac.uk/list_full.asp?pcode=NE%2FP012345%2F1&cookieConsent=A) This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.

    XML metadata: GEMINI compliant metadata for this dataset is available here Files: This dataset consists of 3 files: CT_image_data_info2.xlsx, DN_256x256_image_files.zip, DN_generalisability_code.zip CT_image_data_info2.xlsx This file contains dataset metadata and 1 data tables:

    Dataset Images (described in worksheet Dataset_images) Description: This worksheet details the composition of each dataset used in the analyses Number of fields: 69 Number of data rows: 270287 Fields:

    filename: Root ID (Field type: id) camera_trap_site: Site ID for the camera trap location (Field type: location) taxon: Taxon recorded by camera trap (Field type: taxa) dist_level: Level of disturbance at site (Field type: ordered categorical) baseline: Label as to whether image is included in the baseline training, validation (val) or test set, or not included (NA) (Field type: categorical) increased_cap: Label as to whether image is included in the 'increased cap' training, validation (val) or test set, or not included (NA) (Field type: categorical) dist_individ_event_level: Label as to whether image is included in the 'individual disturbance level datasets split at event level' training, validation (val) or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_1: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 1' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_2: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 2' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 3' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 4' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 5' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_2: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 2 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 3 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 3 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 4 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 3 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3 and 4 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_2_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_all_1_2_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3, 4 and 5 (all)' training set, or not included (NA) (Field type: categorical) dist_camera_level_individ_1: Label as to whether image is included in the 'disturbance level combination analysis split at camera level: disturbance

  18. h

    wiki_paragraphs_english

    • huggingface.co
    Updated Jan 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Per Kummervold (2023). wiki_paragraphs_english [Dataset]. https://huggingface.co/datasets/pere/wiki_paragraphs_english
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2023
    Authors
    Per Kummervold
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    WIKI Paragraphs English

    A multi-split dataset for machine learning research and evaluation, containing text samples in JSON Lines format.

      Features
    

    Multiple splits for different use cases Random shuffle with Fisher-Yates algorithm Structured format with text and metadata Size-varied validation/test sets (100 to 10k samples)

      Splits Overview
    

    Split Name Samples Typical Usage

    train 1,000,000 Primary training data

    validation 10,000 Standard validation… See the full description on the dataset page: https://huggingface.co/datasets/pere/wiki_paragraphs_english.

  19. Model weights and training, validation, and test set images and masks for...

    • zenodo.org
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kylen Solvik; Kylen Solvik; Yaffa Truelove; Yaffa Truelove; JENNIFER BALCH; JENNIFER BALCH; Michael Lathuilliere; Michael Lathuilliere; Thiago Fontenelle; Andrea Castanho; Andrea Castanho; Michael Coe; Michael Coe; Christina Shintani; Christina Shintani; CARLOS Souza Jr; CARLOS Souza Jr; Marcia Nunes Macedo; Marcia Nunes Macedo; Thiago Fontenelle (2025). Model weights and training, validation, and test set images and masks for "Uncovering a million small dams in Brazil using deep learning" [Dataset]. http://doi.org/10.5281/zenodo.14927197
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Kylen Solvik; Kylen Solvik; Yaffa Truelove; Yaffa Truelove; JENNIFER BALCH; JENNIFER BALCH; Michael Lathuilliere; Michael Lathuilliere; Thiago Fontenelle; Andrea Castanho; Andrea Castanho; Michael Coe; Michael Coe; Christina Shintani; Christina Shintani; CARLOS Souza Jr; CARLOS Souza Jr; Marcia Nunes Macedo; Marcia Nunes Macedo; Thiago Fontenelle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Annotated masks and Sentinel-1/-2 images split into training, validation, and test sets. Used for training convolutional neural network for small reservoir mapping.

    - manet_sentinel.ckpt: PyTorch model checkpoint file containing model weights.

    - annotations.zip: Contains binary reservoir masks (0 is non-reservoir, 1 is reservoir) split into training, validation, and test sets.

    - images.zip: Contains Sentinel-1/-2 images split into training, validation, and test sets with the following bands:

    1. Blue
    2. Green
    3. Red
    4. Near-infrared
    5. Sentinel-1 SAR VV
    6. Sentinel-1 SAR VH
    7. NDVI
    8. NDWI
    9. Gao's NDWI
    10. MNDWI

  20. Z

    Data from: Benchmark Datasets Incorporating Diverse Tasks, Sample Sizes,...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jun 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henderson, N. Ashley; Kauwe, K. Steven; Sparks, D. Taylor (2021). Benchmark Datasets Incorporating Diverse Tasks, Sample Sizes, Material Systems, and Data Heterogeneity for Materials Informatics [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4903957
    Explore at:
    Dataset updated
    Jun 6, 2021
    Authors
    Henderson, N. Ashley; Kauwe, K. Steven; Sparks, D. Taylor
    Description

    This benchmark data is comprised of 50 different datasets for materials properties obtained from 16 previous publications. The data contains both experimental and computational data, data suited for regression as well as classification, sizes ranging from 12 to 6354 samples, and materials systems spanning the diversity of materials research. In addition to cleaning the data where necessary, each dataset was split into train, validation, and test splits.

    For datasets with more than 100 values, train-val-test splits were created, either with a 5-fold or 10-fold cross-validation method, depending on what each respective paper did in their studies. Datasets with less than 100 values had train-test splits created using the Leave-One-Out cross-validation method.

    For further information, as well as directions on how to access the data, please go to the corresponding GitHub repository: https://github.com/anhender/mse_ML_datasets/tree/v1.0

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
Organization logo

Machine learning algorithm validation with a limited sample size

Explore at:
text/x-pythonAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

Search
Clear search
Close search
Google apps
Main menu