Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Training YOLO Model Using Golf Course Dataset For Grass Damages is a dataset for object detection tasks - it contains Objects annotations for 1,178 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Description:
This dataset consists of a diverse collection of images featuring Paimon, a popular character from the game Genshin Impact. The images have been sourced from in-game gameplay footage and capture Paimon from various angles and in different sizes (scales), making the dataset suitable for training YOLO object detection models.
The dataset provides a comprehensive view of Paimon in different lighting conditions, game environments, and positions, ensuring the model can generalize well to similar characters or object detection tasks. While most annotations are accurately labeled, a small number of annotations may include minor inaccuracies due to manual labeling errors. This is ideal for researchers and developers working on character recognition, object detection in gaming environments, or other AI vision tasks.
Download Dataset
Dataset Features:
Image Format: .jpg files in 640×320 resolution.
Annotation Format: .txt files in YOLO format, containing bounding box data with:
class_id
x_center
y_center
width
height
Use Cases:
Character Detection in Games: Train YOLO models to detect and identify in-game characters or NPCs.
Gaming Analytics: Improve recognition of specific game elements for AI-powered game analytics tools.
Research: Contribute to academic research focused on object detection or computer vision in animated and gaming environments.
Data Structure:
Images: High-quality .jpg images captured from multiple perspectives, ensuring robust model training across various orientations and lighting scenarios.
Annotations: Each image has an associated .txt file that follows the YOLO format. The annotations are structured to include class identification, object location (center coordinates), and
bounding box dimensions.
Key Advantages:
Varied Angles and Scales: The dataset includes Paimon from multiple perspectives, aiding in creating more versatile and adaptable object detection models.
Real-World Scenario: Extracted from actual gameplay footage, the dataset simulates real-world detection challenges such as varying backgrounds, motion blur, and changing character scales.
Training Ready: Suitable for training YOLO models and other deep learning frameworks that require object detection capabilities.
This dataset is sourced from Kaggle.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.
from IPython.display import Markdown, display
display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:
Image Credit - jinfagang
!git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
%cd yolov7
!pip install -qr requirements.txt
!pip install -q roboflow
!wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
import os
import glob
import wandb
import torch
from roboflow import Roboflow
from kaggle_secrets import UserSecretsClient
from IPython.display import Image, clear_output, display # to display images
print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">
I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!
try:
user_secrets = UserSecretsClient()
wandb_api_key = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api_key)
anonymous = None
except:
wandb.login(anonymous='must')
print('To use your W&B account,
Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB.
Get your W&B access token from here: https://wandb.ai/authorize')
wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.
In Roboflow, We can choose between two paths:
https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">
user_secrets = UserSecretsClient()
roboflow_api_key = user_secrets.get_secret("roboflow_api")
rf = Roboflow(api_key=roboflow_api_key)
project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
dataset = project.version(2).download("yolov7")
Here, I am able to pass a number of arguments: - img: define input image size - batch: determine
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Training Model is a dataset for object detection tasks - it contains Fruits annotations for 456 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The Fish Detection AI project aims to improve the efficiency of fish monitoring around marine energy facilities to comply with regulatory requirements. Despite advancements in computer vision, there is limited focus on sonar images, identifying small fish with unlabeled data, and methods for underwater fish monitoring for marine energy. A YOLO (You Only Look Once) computer vision model was developed using the Eyesea dataset (optical) and sonar images from Alaska Fish and Games to identify fish in underwater environments. Supervised methods were used within YOLO to detect fish based on training using labeled data of fish. These trained models were then applied to different unseen datasets, aiming to reduce the need for labeling datasets and training new models for various locations. Additionally, hyper-image analysis and various image preprocessing methods were explored to enhance fish detection. In this research we achieved: 1. Enhanced YOLO Performance, as compared to a published article (Xu, Matzner 2018) using earlier yolo versions for fish object identification. Specifically, we achieved a best mean Average Precision (mAP) of 0.68 on the Eyesea optical dataset using YOLO v8 (medium-sized model), surpassing previous YOLO v3 benchmarks from that previous article publication. We further demonstrated up to 0.65 mAP on unseen sonar domains by leveraging a hyper-image approach (stacking consecutive frames), showing promising cross-domain adaptability. This submission of data includes: - The actual best-performing trained YOLO model neural network weights, which can be applied to do object detection (PyTorch files, .pt). These are found in the Yolo_models_downloaded zip file - Documentation file to explain the upload and the goals of each of the experiments 1-5, as detailed in the word document (named "Yolo_Object_Detection_How_To_Document.docx") - Coding files, namely 5 sub-folders of python, shell, and yaml files that were used to run the experiments 1-5, as well as a separate folder for yolo models. Each of these is found in their own zip file, named after each experiment - Sample data structures (sample1 and sample2, each with their own zip file) to show how the raw data should be structured after running our provided code on the raw downloaded data - link to the article that we were replicating (Xu, Matzner 2018) - link to the Yolo documentation site from the original creators of that model (ultralytics) - link to the downloadable EyeSea data set from PNNL (instructions on how to download and format the data in the right way to be able to replicate these experiments is found in the How To word document)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Models trained on the small (6cls) or large (9cls) dataset. The training method indicates which metric is used to evaluate when to stop the training process: mAP@.5:.95 (mAP), F1-score (F1) or stopping after a high number of epochs (epoch).
https://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api
This dataset contains labeled data for gun detection collected from various videos on YouTube. The dataset has been specifically curated and labeled by me to aid in training machine learning models, particularly for real-time gun detection tasks. It is formatted for easy use with YOLO (You Only Look Once), one of the most popular object detection models.
Key Features: Source: The videos were sourced from YouTube and feature diverse environments, including indoor and outdoor settings, with varying lighting conditions and backgrounds. Annotations: The dataset is fully labeled with bounding boxes around guns, following the YOLO format (.txt files for annotations). Each annotation provides the class (gun) and the coordinates of the bounding box. YOLO-Compatible: The dataset is ready to be used with any YOLO model (YOLOv3, YOLOv4, YOLOv5, etc.), ensuring seamless integration for object detection training. Realistic Scenarios: The dataset includes footage of guns from various perspectives and angles, making it useful for training models that can generalize to real-world detection tasks. This dataset is ideal for researchers and developers working on gun detection systems, security applications, or surveillance systems that require fast and accurate detection of firearms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
DASH Model Training is a dataset for object detection tasks - it contains Obstacles annotations for 3,169 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Description:
This dataset provides a comprehensive platform for enhancing QR code detection models, leveraging both synthetic and real-world data.
Dataset Components
Training Set: Includes thousands of auto-generated QR codes. These QR codes are isolated with no background, allowing the model to focus purely on shape and structure recognition.
Test Set: Consists of real-life images featuring QR codes in varied contexts, from different angles, lighting conditions, and cluttered environments.
Background Images: A curated set of images taken from malls, retail stores, streets, etc., allowing developers to blend QR codes into realistic scenarios, simulating real-world conditions for model training.
Download Dataset
Data Usage and Goals
The primary objective is to train object detection models, such as YOLO (You Only Look Once), using synthetic QR codes and background images to improve generalization on unseen, real-world data. Training on the synthetic set avoids overfitting, while the test set evaluates the model’s performance in natural environments with QR codes placed in cluttered, busy scenes.
Data Augmentation and Variety
To make the dataset more robust, various augmentations are included:
Diverse QR Code Sizes: Codes of varying sizes are use, enabling the model to detect small and large codes in the same setting.
Rotations and Distortions: QR codes are display from multiple angles and subjected to distortions, mimicking real-life conditions where codes may not be perfectly align.
Occlusion Handling: Some QR codes are partially obscured by objects, providing additional complexity for the detection task.
Potential Applications
This dataset is suit for AI developers working on:
Mobile scanning apps
Inventory management systems
Augmented reality applications that rely on QR codes for object recognition.
This dataset is sourced from Kaggle.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Pascal VOC 2007 and 2012 dataset to use easily for YOLO training. Original Data source.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
SDP Training Model is a dataset for object detection tasks - it contains Water annotations for 281 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Training Darknet Model is a dataset for object detection tasks - it contains Humans Obstacles annotations for 242 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
YOLO_training is a dataset for object detection tasks - it contains Carre SV Oeil annotations for 203 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An MDCFVit-YOLO model based on the YOLOv8 algorithm is proposed to address issues in nighttime infrared object detection such as low visibility, high interference, and low precision in detecting small objects. The backbone network uses the lightweight Repvit model, improving detection performance and reducing model weight through transfer learning. The proposed MPA module integrates multi-scale contextual information, capturing complex dependencies between spatial and channel dimensions, thereby enhancing the representation capability of the neural network. The CSM module dynamically adjusts the weights of feature maps, enhancing the model of sensitivity to small targets. The dynamic automated detection head DAIH improves the accuracy of infrared target detection by dynamically adjusting regression feature maps. Additionally, three innovative loss functions—focalerDIoU, focalerGIOU and focalerShapeIoU are proposed to reduce losses during the training process. Experimental results show that the detection accuracy of 78% for small infrared nighttime targets, with a recall rate of 58.6%, an mAP value of 67%. and a parameter count of 20.9M for the MDCFVit-YOLO model. Compared to the baseline model YOLOv8, the mAP increased by 6.4%, with accuracy and recall rates improved by 4.5% and 5.7%, respectively. This research provides new ideas and methods for infrared target detection, enhancing the detection accuracy and real-time performance.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Custom YOLO Dataset
This dataset is formatted for YOLO-based instance segmentation. It includes images and annotations for training, validation, and testing.
Dataset structure
train/images, valid/images, test/images: JPEG image files train/labels, valid/labels, test/labels: YOLO-format .txt annotations data.yaml: defines class names and split locations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
YOLO TRAIN DATA SET is a dataset for object detection tasks - it contains Objects annotations for 2,106 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Yolo V 11 Training is a dataset for object detection tasks - it contains P annotations for 310 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
## Overview
Yolo Find Text is a dataset for object detection tasks - it contains Text annotations for 290 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Open Poetry Vision
dataset is a synthetic dataset created by Roboflow for OCR tasks.
It combines a random image from the Open Images Dataset with text primarily sampled from Gwern's GPT-2 Poetry project. Each image in the dataset contains between 1 and 5 strings in a variety of fonts and colors randomly positioned in the 512x512 canvas. The classes correspond to the font of the text.
Example Image:
https://i.imgur.com/sZT516a.png" alt="Example Image">
A common OCR workflow is to use a neural network to isolate text for input into traditional optical character recognition software. This dataset could make a good starting point for an OCR project like business card parsing or automated paper form-processing.
Alternatively, you could try your hand using this as a neural font identification dataset. Nvidia, amongst others, have had success with this task.
Use the fork
button to copy this dataset to your own Roboflow account and export it with new preprocessing settings (perhaps resized for your model's desired format or converted to grayscale), or additional augmentations to make your model generalize better. This particular dataset would be very well suited for Roboflow's new advanced Bounding Box Only Augmentations.
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
Developers reduce 50% of their code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Yolo V11 Testing is a dataset for object detection tasks - it contains Objects annotations for 646 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Training YOLO Model Using Golf Course Dataset For Grass Damages is a dataset for object detection tasks - it contains Objects annotations for 1,178 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).