Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2023-5 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The NLCD product suite includes data for years 1985 through 2023. The NCLD data are processed to mask TCC from non-treed features such as water and non-tree crops, and to reduce interannual noise and smooth the NLCD time series. TCC pixel values range from 0 to 100 percent. The non-processing area is represented by value 254, and the background is represented by the value 255. The Science and NLCD tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms. For information on the Science data and processing steps see the Science metadata. Information on the NLCD data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover (TCC) data to serve needs of multiple user communities. These datasets encompass the conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2021-4 TCC product suite include: - The raw model outputs referred to as the annual Science data; and - A modified version built for the National Land Cover Database referred to as NLCD data. They are available at the following locations: Science: https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/ https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife NLCD: https://www.mrlc.gov/data https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife The NLCD product suite includes data for years 2011, 2013, 2016, 2019 and 2021. The NCLD data are processed to remove small interannual changes from the annual TCC timeseries, and to mask TCC ...
Facebook
TwitterThe tree canopy layer displays the proportion of the land surface covered by trees for the years 2011 to 2021 from the National Land Cover Database. Source: https://www.mrlc.govPhenomenon Mapped: Proportion of the landscape covered by trees.Time Extent: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021Units: Percent (of each pixel that is covered by tree canopy)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate Systems: North America Albers Equal Area ConicMosaic Projection: WGS 1984 Web Mercator Auxiliary SphereExtent: CONUS, Southeastern Alaska, Hawaii, Puerto Rico and the US Virgin IslandsSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: April 1, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year changing appearance every year in the lower 48 states from 2011 to 2021. (In Alaska, Hawaii, Puerto Rico and the US Virgin Islands, the animation will only show a change between 2011 and 2016.) To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Alaska, Hawaii, Puerto Rico, and the US Virgin IslandsAt this time Alaska, Hawaii, Puerto Rico, and the US Virgin Islands do not have tree canopy cover for every year in the series like MRLC produced for the Lower 48 states. Furthermore, only a portion of coastal Southeastern Alaska from Kodiak to the Panhandle is available, but not the entire state. Alaska, Hawaii, Puerto Rico, and the US Virgin Islands have data in the series only from 2011 and 2016. Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThe USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2023-5 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The Science data - the focus of this metadata - are the initial annual model outputs that consist of two images: percent tree canopy cover (TCC) and standard error. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset, and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the years 1985 through 2023 are available. The Science data were produced using a random forest regression algorithm. TCC pixel values range from 0 to 100 percent. The value 254 represents the non-processing area mask where no cloud or cloud shadow-free data are available to produce an output, and 255 represents the background value. The Science data are accessible for multiple user communities, through multiple channels and platforms. For information on the NLCD TCC data and processing steps see the NLCD metadata. Information on the Science data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2021-4 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The NLCD product suite includes data for years 2011 through 2021. The NCLD data are processed to remove small interannual changes from the annual TCC timeseries, and to mask TCC pixels that are known to be 0 percent TCC, non-tree agriculture, and water. A small interannual change is defined as a TCC change less than an increase or decrease of 10 percent compared to a TCC baseline value established in a prior year. The initial TCC baseline value is the median of 2008-2010 TCC data. For each year following 2011, on a pixel-wise basis TCC values are updated to a new baseline value if an increase or decrease of 10 percent TCC occurs relative to the 2008-2010 TCC baseline value. If no increase or decrease greater than 10 percent TCC occurs relative to the 2008-2010 baseline, then the 2008-2010 TCC baseline value is carried through to the next year in the timeseries. Pixel values range from 0 to 100 percent. The non-processing area is represented by value 254, and the background is represented by the value 255. The Science and NLCD tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms. For information on the Science data and processing steps see the Science metadata. Information on the NLCD data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/ This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This repository contains spatial datasets with metadata on land cover, tree canopy change, and estimated tree points and crown polygons for New York City (NYC; New York, USA) as of 2021, made available by The Nature Conservancy, New York Cities Program and developed under contract by the University of Vermont Spatial Analysis Lab. The datasets are provided herein with high-level background and information; additional analysis, particularly on tree canopy change and distribution across NYC considering various geogrpahic units are planned for release in a forthcoming report by The Nature Conservancy. For questions about these data, contact Michael Treglia, Lead Scientist with The Nature Conservancy, New York Cities Program, at michael.treglia@tnc.org.
Datasets included here are as follows (file names in italics):
These datasets were based on object-based image analysis of a combination of 2021 Light Detection and Ranging (LiDAR; data available from the State of New York) for tree canopy and tree location/crown data in particular) along with high-resolution aerial imagery (from 2021 via the USDA National Agriculture Inventory Program and from 2022 via the New York State GIS Clearinghouse), followed by manual corrections. The general methods used to develop the land cover and tree canopy datasets are described in MacFaden et al. (2012). A per-pixel accuracy assessment of the land cover data with 1,999 points estimated an overall accuracy of 95.52% across all land cover classes, and 99.06% for tree canopy specifically (a critical focal area for this project). Iterative review of the data and subject matter expertise were contributed by from The Nature Conservancy and the NYC Department of Parks and Recreation.
While analyses of tree canopy and tree canopy change across NYC are pending, those interested can review a report that includes analyses of the most recent data (2010-2017) and a broad consideration of the NYC urban forest, The State of the Urban Forest in New York City (Treglia et al 2021).
MacFaden, S. W., J. P. M. O’Neil-Dunne, A. R. Royar, J. W. T. Lu, and A. G. Rundle. 2012. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis. Journal of Applied Remote Sensing 6(1):063567.
Treglia, M.L., Acosta-Morel, M., Crabtree, D., Galbo, K., Lin-Moges, T., Van Slooten, A., & Maxwell, E.N. (2021). The State of the Urban Forest in New York City. The Nature Conservancy. doi: 10.5281/zenodo.5532876
© The Nature Conservancy. This material is provided as-is, without warranty under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 (CC BY-NC-SA 4.0) license.
If using any of these datasets, please cite the work according to the following recommended citation:
The Nature Conservancy. 2024. New York City Land Cover (2021), Tree Canopy Change (2017-2021), and Estimated Tree Location and Crown Data (2021). Developed under contract by the University of Vermont Spatial Analysis Laboratory. doi: 10.5281/zenodo.14053441.
All spatial data are provided in the New York State Plan Long Island Zone (US survey foot) coordinate reference system, EPSG 2263. The land cover and tree canopy change datasets are made available as raster data in Cloud Optimized GeoTIFF format (.tif), with associated metadata files as .xml files. The vector data of estimated tree locations and crown objects and shapes are made available in a zipped Esri File Geodatabase, with metadata stored within the File Geodatabase.
Facebook
TwitterThis dataset contains estimates of tree canopy cover presence at high resolution (0.5m) across the state of Vermont for 2016 in Cloud-Optimized GeoTIFF (*.tif) format. Tree canopy was derived from 2016 high-resolution remotely sensed data as part of the Vermont High-Resolution Land Cover mapping project. Object-based image analysis techniques (OBIA) were employed to extract potential tree canopy and trees using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:3000 and all observable errors were corrected. Tree canopy assessments have been conducted for numerous communities throughout the U.S. where the results have been instrumental in helping to establish tree canopy goals.
Facebook
TwitterIncrease the number of trees.
Facebook
TwitterThis classification was created using high-resolution multispectral National Agriculture Imagery Program (NAIP) leaf-on imagery (2015), spring leaf-off imagery (2011- 2014), Multispectral derived indices, LiDAR data, LiDAR derived products, and other thematic ancillary data including the updated National Wetlands Inventory, LiDAR building footprints, airport, OpenStreetMap roads and railroads centerlines. These data sets were integrated using an Object-Based Image Analysis (OBIA) approach to classify 12 land cover classes: Deciduous Tree Canopy, Coniferous Tree Canopy, Buildings, Bare Soil, other Paved surface, Extraction, Row Crop, Grass/Shrub, Lakes, Rivers, Emergent Wetland, Forest and Shrub Wetland.
We mapped the 12 classes by using an OBIA approach through the creation of customized rule sets for each area. We used the Cognition Network Language (CNL) within the software eCognition Developer to develop the customized rule sets. The eCognition Server was used to execute a batch and parallel processing which greatly reduced the amount of time to produce the classification. The classification results were evaluated for each area using independent stratified randomly generated points. Accuracy assessment estimators included overall accuracies, producers accuracy, users accuracy, and kappa coefficient. The combination of spectral data and LiDAR through an OBIA method helped to improve the overall accuracy results providing more aesthetically pleasing maps of land cover classes with highly accurate results.
Facebook
TwitterThis 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg
The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to ...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2021-4 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The Science data - the focus of this metadata - are the initial annual model outputs that consist of two images: percent tree canopy cover (TCC) and standard error. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset, and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the years 2008 through 2021 are available. The Science data were produced using a random forests regression algorithm. TCC pixel values range from 0 to 100 percent. The value 254 represents the non-processing area mask where no cloud or cloud shadow-free data are available to produce an output, and 255 represents the background value. The Science data are accessible for multiple user communities, through multiple channels and platforms. For information on the NLCD TCC data and processing steps see the NLCD metadata. Information on the Science data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Moderate-resolution (30 m) national map products have limited capacity to represent fine-scale, heterogeneous urban forms and processes, yet systematic improvements from incorporating higher resolution predictor data remain rare. In this study, we applied random forest models to high-resolution land cover data for 71 U.S. urban areas, moderate-resolution National Land Cover Database (NLCD) Tree Canopy Cover (TCC), and additional explanatory climatic and structural data to develop an enhanced U.S.-scale urban TCC dataset. With an overall R2 of 0.747, our model estimated TCC within 3% for 62 urban areas and added 13.4% more city-level TCC on average, compared to the native NLCD TCC product. Multiple cross-validations indicated model stability suitable for building a national-scale TCC dataset (median R2 of 0.752, 0.675, and 0.743 for 1,000-fold cross validation, urban area leave-one-out cross validation, and cross validation by Census block group median year built, respectively). Ad ...
Facebook
TwitterThis data set provides high-resolution (1-m) tree canopy cover for states in the Northeast USA. State-level canopy cover data are currently available for Pennsylvania (data for nominal year 2008), Delaware (2014), and Maryland (2013). The data were derived with a rules-based expert system which facilitated integration of leaf-on LiDAR and imagery data into a single classification workflow, exploiting the spectral, height, and spatial information contained in the datasets. Additional states will be added as data processing is completed.
Facebook
TwitterA 6-in resolution tree canopy change (2010 - 2017) dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset represents a "top-down" mapping perspective and all tree polygons are classed as: (1) No Change, (2) Gain, (3) Loss. No change indicates that this portion of the canopy has undergone no modifications during the time period. Gain indicates that new tree canopy has appeared during the time period. Loss indicates that this portion of the tree canopy was removed during the time period.
To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_TreeCanopyChange.md
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Learn more about the project and how to use the canopy assessment data by visiting the StoryMap!
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2021-4 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The Science data are the initial annual model outputs that consist of two images: percent tree canopy cover (TCC) and standard error. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset, and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the years 2008 through 2021 are available. The Science data were produced using a random forests regression algorithm. For standard error data, the initial standard error estimates that ranged from 0 to approximately 45 were multiplied by 100 to maintain data precision (e.g., 45 = 4500). Therefore, standard error estimates pixel values range from 0 to approximately 4500. The value 65534 represents the non-processing area mask where no cloud or cloud shadow-free data are available to produce an output, and 65535 represents the background value. The Science data are accessible for multiple user communities, through multiple channels and platforms. For information on the NLCD TCC data and processing steps see the NLCD metadata. Information on the Science data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Learn more about the project and how to use the canopy assessment data by visiting the StoryMap!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USDA Forest Service (USFS) builds multiple versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass CONUS, Coastal Alaska, Hawaii, U.S. Virgin Islands and Puerto Rico. There are three versions of data within the 2016 TCC Product Suite, which include: The initial model outputs referred to as the Analytical data; A masked version of the initial output referred to as Cartographic data; And a modified version built for the National Land Cover Database and referred to as NLCD data, which includes a canopy cover change dataset derived from subtraction of datasets for the nominal years of 2011 and 2016.The Analytical data are the initial model outputs generated in the production workflow. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the nominal years of 2011 and 2016 are available. The Cartographic products mask the initial model outputs to improve the visual appearance of the datasets. These data are best suited for users who prioritize visual appearance of the data for cartographic and illustrative purposes. Datasets for the nominal years of 2011 and 2016 are available. The NLCD data are the result of further processing of the masked data. The goal was to generate three coordinated components. The components are (1) a dataset for the nominal year of 2011, (2) a dataset for the nominal year of 2016, and (3) a dataset that captures the change in canopy cover between the two nominal years of 2011 and 2016. For the NLCD data, the three components meet the criterion of 2011 TCC + change in TCC = 2016 TCC. These NLCD data are best suited for users who require a coordinated three-component data stack where each pixel's values meet the criterion of 2011 TCC + change in TCC = 2016 TCC. Datasets for the nominal years of 2011 and 2016 are available, as well as a dataset that captures the change (loss or gain) in canopy cover between those two nominal years of 2011 and 2016, in areas where change was identified. These tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms, as listed below: Analytical USFS Tree Canopy Cover Datasets USFS Enterprise Data Warehouse Cartographic USFS Tree Canopy Cover Datasets NLCD Multi-Resolution Land Characteristics (MRLC) Consortium USFS Enterprise Data Warehouse The CONUS TCC 2011 NLCD dataset is comprised of a single layer. The pixel values range from 0 to 91 percent. The background is represented by the value 255. The dataset has data gaps due to persistent clouds/shadows in the Landsat images used for modeling. These data gaps are represented by the value 127.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterThis dataset holds deciduous fraction and tree canopy cover at 30-m resolution over the North American boreal domain for 1992 to 2015. Deciduous fraction is the areal percentage of deciduous trees relative to all tree canopy cover within a pixel, and tree canopy cover is the areal percentage of a pixel that is covered by tree canopy. Deciduous fraction values are valid only for pixels with tree canopy cover >25 percent. Normalized difference vegetation index (NDVI)-based median-value image composites were derived from Landsat 5, 7, and 8 Collection 1 surface reflectance datasets for years 1987-1997, 1998-2002, 2003-2007, 2008-2012, and 2013-2018 to create composites for nominal years 1992, 2000, 2005, 2010, and 2015, respectively. These image composites were prepared for early spring, mid-summer, and mid-to-late fall seasons to identify key differences in deciduous and evergreen green-up amplitudes. Random Forest (RF) regression models were used to derive deciduous fraction and tree canopy cover from the image composites. These models were trained with data from in-situ samples across Alaska and Canada from a variety of studies. Seventy percent of the in-situ samples were used for training and 30% for validation. Per-pixel uncertainty for both deciduous fraction and tree canopy cover are included and were based on one standard deviation of output values across all decision trees in the RF regression. These datasets were developed as part of NASA's ABoVE project to capture forest composition changes over the North American boreal domain across the last several decades. The data are provided in GeoTIFF format.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2023-5 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The NLCD product suite includes data for years 1985 through 2023. The NCLD data are processed to mask TCC from non-treed features such as water and non-tree crops, and to reduce interannual noise and smooth the NLCD time series. TCC pixel values range from 0 to 100 percent. The non-processing area is represented by value 254, and the background is represented by the value 255. The Science and NLCD tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms. For information on the Science data and processing steps see the Science metadata. Information on the NLCD data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/