Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterIn 2024, about **** million deaths were reported in the United States. This reflected a slight decrease from the previous year, and an ** percent decrease from the peak of the COVID-19 pandemic in 2020.
Facebook
TwitterBy Health [source]
This dataset contains mortality statistics for 122 U.S. cities in 2016, providing detailed information about all deaths that occurred due to any cause, including pneumonia and influenza. The data is voluntarily reported from cities with populations of 100,000 or more, and it includes the place of death and the week during which the death certificate was filed. Data is provided broken down by age group and includes a flag indicating the reliability of each data set to help inform analysis. Each row also provides longitude and latitude information for each reporting area in order to make further analysis easier. These comprehensive mortality statistics are invaluable resources for tracking disease trends as well as making comparisons between different areas across the country in order to identify public health risks quickly and effectively
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains mortality rates for 122 U.S. cities in 2016, including deaths by age group and cause of death. The data can be used to study various trends in mortality and contribute to the understanding of how different diseases impact different age groups across the country.
In order to use the data, firstly one has to identify which variables they would like to use from this dataset. These include: reporting area; MMWR week; All causes by age greater than 65 years; All causes by age 45-64 years; All causes by age 25-44 years; All causes by age 1-24 years; All causes less than 1 year old; Pneumonia and Influenza total fatalities; Location (1 & 2); flag indicating reliability of data.
Once you have identified the variables that you are interested in,you will need to filter the dataset so that it only includes relevant information for your analysis or research purposes. For example, if you are looking at trends between different ages, then all you would need is information on those 3 specific cause groups (greater than 65, 45-64 and 25-44). You can do this using a selection tool that allows you to pick only certain columns from your data set or an excel filter tool if your data is stored as a csv file type .
Next step is preparing your data - it’s important for efficient analysis also helpful when there are too many variables/columns which can confuse our analysis process – eliminate unnecessary columns, rename column labels where needed etc ... In addition , make sure we clean up any missing values / outliers / incorrect entries before further investigation .Remember , outliers or corrupt entries may lead us into incorrect conclusions upon analyzing our set ! Once we complete the cleaning steps , now its safe enough transit into drawing insights !
The last step involves using statistical methods such as linear regression with multiple predictors or descriptive statistical measures such as mean/median etc ..to draw key insights based on analysis done so far and generate some actionable points !
With these steps taken care off , now its easier for anyone who decides dive into another project involving this particular dataset with added advantage formulated out of existing work done over our previous investigations!
- Creating population health profiles for cities in the U.S.
- Tracking public health trends across different age groups
- Analyzing correlations between mortality and geographical locations
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: rows.csv | Column name | Description | |:--------------------------------------------|:-----------------------------------...
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterIn 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.
Facebook
TwitterData on county socioeconomic status for 2,132 US counties and each county’s average annual cardiovascular mortality rate (CMR) and total PM2.5 concentration for 21 years (1990-2010). County CMR, PM2.5, and socioeconomic data were obtained from the U.S. National Center for Health Statistics, U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system, and the U.S. Census, respectively. A socioeconomic index was created using seven county-level measures from the 1990 US census using factor analysis. Quintiles of this index were used to generate categories of county socioeconomic status. This dataset is associated with the following publication: Wyatt, L., G. Peterson, T. Wade, L. Neas, and A. Rappold. The contribution of improved air quality to reduced cardiovascular mortality: Declines in socioeconomic differences over time. ENVIRONMENT INTERNATIONAL. Elsevier B.V., Amsterdam, NETHERLANDS, 136: 105430, (2020).
Facebook
TwitterHealth, United States is an annual report on trends in health statistics, find more information at http://www.cdc.gov/nchs/hus.htm.
Facebook
TwitterAnnual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph depicts the number of AIDS-related deaths in the United States annually from 1981 to 2021. The x-axis represents the years, labeled with two-digit abbreviations from '81 to '21, while the y-axis shows the number of deaths in thousands. Over this 41-year span, AIDS deaths increased dramatically from 1,675.77 in 1981, reaching a peak of 43,276.94 in 1994, and then declined significantly to 6,306.24 by 2021. The data highlights a sharp upward trend in the early years of the epidemic, followed by a substantial downward trend starting in the mid-1990s, reflecting improvements in treatment and prevention. The information is presented in a line graph format, effectively illustrating the rise and subsequent decline in AIDS-related fatalities over the four decades.
Facebook
TwitterThis dataset documents cardiovascular disease (CVD) death rates, relative and absolute excess death rates, and trends. Specifically, this report presents county (or county equivalent) estimates of CVD death rates in 2000-2020, trends during 2010-2019, and relative and absolute excess death rates in 2020 by age group (ages 35–64 years, ages 65 years and older). All estimates were generated using a Bayesian spatiotemporal model and a smoothed over space, time, and 10-year age groups. Rates are age-standardized in 10-year age groups using the 2010 US population. Data source: National Vital Statistics System.
Facebook
TwitterThe UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 13 July 2023 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Age groups for childhood death rates are based on age at death.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterReporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dict
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Context:
This dataset provides data on death rates for suicide categorized by selected population characteristics including sex, race, Hispanic origin, and age in the United States. It includes critical information about measures, definitions, and changes over time.
Source: - NCHS, National Vital Statistics System (NVSS) - Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968 - Numerator data from NVSS annual public-use Mortality Files - Denominator data from U.S. Census Bureau national population estimates - Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021
Source URLs:
Death rates for suicide by sex, race, Hispanic origin, and age: United States - HUS 2019 Data Finder - National Vital Statistics Reports - NVSS Appendix Entry
The dataset consists of data collected from the National Vital Statistics System (NVSS) and the U.S. Census Bureau, providing a comprehensive overview of suicide death rates across different demographics in the United States from 1950 to 2001.
| Column Name | Description |
|---|---|
| INDICATOR | Indicator for the data type, e.g., Death rate |
| UNIT | Unit of measurement, e.g., Deaths per 100,000 population |
| UNIT_NU | Numerical value representing the unit |
| STUB_NA | Stub name for category, e.g., Total |
| STUB_LA | Label for the stub category, e.g., All persons |
| STUB_LA_1 | Additional label information for the stub category |
| YEAR | The year the data was recorded |
| YEAR_NUM | Numerical value representing the year |
| AGE | Age group category, e.g., All ages |
| AGE_NUM | Numerical value representing the age group |
| ESTIMATE | Estimated death rate |
Facebook
TwitterThe CMS Program Statistics - Medicare Deaths summary tables provide data on Medicare deaths. For additional information on enrollment, providers, and Medicare use and payment, visit the CMS Program Statistics page. Below is the list of tables: MDCR ENROLL AB 33. Medicare Deaths: Total (Original Medicare and Medicare Advantage and Other Health Plan) Beneficiaries, by Month of Death, Yearly Trend MDCR ENROLL AB 34. Medicare Deaths: Total, Original Medicare, and Medicare Advantage and Other Health Plan Beneficiaries, by Demographic Characteristics MDCR ENROLL AB 35. Medicare Deaths: Total (Original Medicare and Medicare Advantage and Other Health Plan) Beneficiaries, by Area of Residence MDCR ENROLL AB 36. Medicare Deaths: Original Medicare Beneficiaries, by Month of Death, Yearly Trend MDCR ENROLL AB 37. Medicare Deaths: Original Medicare Beneficiaries, by Area of Residence MDCR ENROLL AB 38. Medicare Deaths: Medicare Advantage and Other Health Plan Beneficiaries, by Month of Death, Yearly Trend MDCR ENROLL AB 39. Medicare Deaths: Medicare Advantage and Other Health Plan Beneficiaries, by Area of Residence
Facebook
TwitterEffective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Facebook
TwitterThe UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 11 July 2024 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Facebook
TwitterThis dataset contains model-based county estimates for drug-poisoning mortality.
Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).
Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2016 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances.
Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates for 1999-2015 have been updated, and may differ slightly from previously published estimates. Differences are expected to be minimal, and may result from different county boundaries used in this release (see below) and from the inclusion of an additional year of data. Previously published estimates can be found here for comparison.(6) Estimates are unavailable for Broomfield County, Colorado, and Denali County, Alaska, before 2003 (7,8). Additionally, Clifton Forge County, Virginia only appears on the mortality files prior to 2003, while Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. These counties were therefore merged with adjacent counties where necessary to create a consistent set of geographic units across the time period. County boundaries are largely consistent with the vintage 2005-2007 bridged-race population file geographies, with the modifications noted previously (7,8).
REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm.
CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Rossen LM, Khan D, Warner M. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999–2009. Am J Prev Med 45(6):e19–25. 2013.
Rossen LM, Khan D, Warner M. Hot spots in mortality from drug poisoning in the United States, 2007–2009. Health Place 26:14–20. 2014.
Rossen LM, Khan D, Hamilton B, Warner M. Spatiotemporal variation in selected health outcomes from the National Vital Statistics System. Presented at: 2015 National Conference on Health Statistics, August 25, 2015, Bethesda, MD. Available from: http://www.cdc.gov/nchs/ppt/nchs2015/Rossen_Tuesday_WhiteOak_BB3.pdf.
Rossen LM, Bastian B, Warner M, and Khan D. NCHS – Drug Poisoning Mortality by County: United States, 1999-2015. Available from: https://data.cdc.gov/NCHS/NCHS-Drug-Poisoning-Mortality-by-County-United-Sta/pbkm-d27e.
National Center for Health Statistics. County geog
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Around 7.7% of Americans have asthma, including 20.2 million adults and 4.6 million children. This study examines asthma mortality trends and disparities across U.S. demographic and geographic groups from 1999 to 2020. A retrospective analysis was conducted using the CDC WONDER database to examine asthma-related deaths in the U.S. from 1999 to 2020. Age-adjusted mortality rates (AAMRs) and crude mortality rates (CMRs) per 100,000 were calculated. Trends and annual percent changes (APCs) were assessed overall and stratified by sex, race, region, and age. From 1999 to 2020, the U.S. recorded 221 161 asthma-related deaths (AAMR: 3.07), mostly in medical facilities. Mortality declined from 1999 to 2018 (APC: −1.53%) but surged from 2018 to 2020 (APC: 28.63%). Females, NH Blacks, and NH American Indians had the highest mortality rates. Older adults (≥65) had the greatest burden, with younger groups showing notable increases post-2018. Rural areas and the West reported slightly higher rates than urban and other regions. Hawaii and the District of Columbia had the highest AAMRs, while Florida and Nevada had the lowest. Asthma-related mortality in the U.S. declined until 2018 but sharply increased from 2018 to 2020, with rises across all demographic groups, regions, and settings. Females, NH Blacks, and older adults consistently had higher mortality rates, while younger age groups showed recent alarming increases. Targeted interventions are urgently needed to address inequities and recent mortality surges.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The USAccDeaths dataset contains monthly data on accidental deaths in the United States from 1973 to 1978. This dataset provides a time-series overview of the number of accidental deaths recorded in various states during that period, categorized by different types of accidents (e.g., motor vehicle accidents, falls, drownings, etc.). This dataset is valuable for analyzing trends in accidental deaths over time, as well as studying the impact of public health initiatives, policies, and socio-economic factors.
The data can be used for a variety of tasks, including trend analysis, time-series forecasting, and statistical modeling. It can also be used to explore relationships between environmental or public health factors and accident rates.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.