Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets are original and specifically collected for research aimed at reducing registration errors between Camera-LiDAR datasets. Traditional methods often struggle with aligning 2D-3D data from sources that have different coordinate systems and resolutions. Our collection comprises six datasets from two distinct setups, designed to enhance versatility in our approach and improve matching accuracy across both high-feature and low-feature environments.Survey-Grade Terrestrial Dataset:Collection Details: Data was gathered across various scenes on the University of New Brunswick campus, including low-feature walls, high-feature laboratory rooms, and outdoor tree environments.Equipment: LiDAR data was captured using a Trimble TX5 3D Laser Scanner, while optical images were taken with a Canon EOS 5D Mark III DSLR camera.Mobile Mapping System Dataset:Collection Details: This dataset was collected using our custom-built Simultaneous Localization and Multi-Sensor Mapping Robot (SLAMM-BOT) in several indoor mobile scenes to validate our methods.Equipment: Data was acquired using a Velodyne VLP-16 LiDAR scanner and an Arducam IMX477 Mini camera, controlled via a Raspberry Pi board.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets are original and specifically collected for research aimed at reducing registration errors between Camera-LiDAR datasets. Traditional methods often struggle with aligning 2D-3D data from sources that have different coordinate systems and resolutions. Our collection comprises six datasets from two distinct setups, designed to enhance versatility in our approach and improve matching accuracy across both high-feature and low-feature environments.Survey-Grade Terrestrial Dataset:Collection Details: Data was gathered across various scenes on the University of New Brunswick campus, including low-feature walls, high-feature laboratory rooms, and outdoor tree environments.Equipment: LiDAR data was captured using a Trimble TX5 3D Laser Scanner, while optical images were taken with a Canon EOS 5D Mark III DSLR camera.Mobile Mapping System Dataset:Collection Details: This dataset was collected using our custom-built Simultaneous Localization and Multi-Sensor Mapping Robot (SLAMM-BOT) in several indoor mobile scenes to validate our methods.Equipment: Data was acquired using a Velodyne VLP-16 LiDAR scanner and an Arducam IMX477 Mini camera, controlled via a Raspberry Pi board.