100+ datasets found
  1. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  2. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  4. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  6. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. COVID-19 worldometer daily snapshots

    • kaggle.com
    zip
    Updated Oct 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Beniaguev (2020). COVID-19 worldometer daily snapshots [Dataset]. https://www.kaggle.com/selfishgene/covid19-worldometer-snapshots-since-april-18
    Explore at:
    zip(1204483 bytes)Available download formats
    Dataset updated
    Oct 13, 2020
    Authors
    David Beniaguev
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Manually collected daily snapshots of worldometer COVID-19 data (since April 18)

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F128750%2F66baee67b3e35bf9656ff816e692527e%2Fsnapshot_worldometer_july4.png?generation=1593988535797227&alt=media" alt="">

    Content

    The dataset contains data about the numbers of tests, cases, deaths, serious/critical cases, active cases and recovered cases in each country for every day since April 18, and also contains the population of each country to calculate per-capita penetration of the virus

    I've removed data from the "Diamond Princess" and "MS Zaandam" since they are not countries

    Additionally, an auxiliray table with information about the fraction of the general population at different age groups for every country is added (taken from Wikipedia). This is specifically relevant since COVID-19 death rate is very much age dependent.

    Acknowledgements

    The people at "www.worldometers.info" collecting and maintaining this site really are doing very important work "https://www.worldometers.info/coronavirus/#countries">https://www.worldometers.info/coronavirus/#countries

    Data about age structure for every country comes from wikipedia

    Inspiration

    It's possible to use this dataset for various purposes and analyses My goal will be to use the additional data about the number of tests performed in each country to estimate the true death and infection rates of COVID-19

  8. Number of COVID-19 deaths in the United States as of March 10, 2023, by...

    • statista.com
    Updated Mar 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of COVID-19 deaths in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1103688/coronavirus-covid19-deaths-us-by-state/
    Explore at:
    Dataset updated
    Mar 28, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.

    The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.

    Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.

  9. COVID-19 deaths worldwide as of May 2, 2023, by country and territory

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 deaths worldwide as of May 2, 2023, by country and territory [Dataset]. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.

    Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.

    What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.

  10. COVID-19 Case Mortality Ratios by Country

    • kaggle.com
    zip
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mooney (2020). COVID-19 Case Mortality Ratios by Country [Dataset]. https://www.kaggle.com/paultimothymooney/coronavirus-covid19-mortality-rate-by-country
    Explore at:
    zip(7847 bytes)Available download formats
    Dataset updated
    Sep 25, 2020
    Authors
    Paul Mooney
    Description

    Context

    The 2019–20 coronavirus pandemic is an ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Source: https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic.

    Content

    Coronavirus COVID-19 confirmed cases, deaths, case mortality ratios, country, latitude, and longitude.

    Disclaimer: Data will be more accurate as more data comes in. Deaths/Infections will be a better measure of mortality rate after a pandemic is over, when the estimates of the number of infections start to get closer to the true number of infected individuals. Note discussion of case mortality ratio (numbers as they are reported) vs infection mortality ratio (estimates of the actual numbers). This dataset discusses case mortality ratios.

    Acknowledgements

    Banner photo by Adhy Savala on Unsplash.

    Data generated from the notebook https://www.kaggle.com/paultimothymooney/does-latitude-impact-the-spread-of-covid-19 using data from https://www.kaggle.com/paultimothymooney/latitude-and-longitude-for-every-country-and-state and https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset, all of which were released under open data licenses.

  11. Data_Sheet_1_Adjusting Reported COVID-19 Deaths for the Prevailing Routine...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hemant Deepak Shewade; Giridara Gopal Parameswaran; Archisman Mazumder; Mohak Gupta (2023). Data_Sheet_1_Adjusting Reported COVID-19 Deaths for the Prevailing Routine Death Surveillance in India.docx [Dataset]. http://doi.org/10.3389/fpubh.2021.641991.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Hemant Deepak Shewade; Giridara Gopal Parameswaran; Archisman Mazumder; Mohak Gupta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    In India, the “low mortality” narrative based on the reported COVID-19 deaths may be causing more harm than benefit. The extent to which COVID-19 deaths get reported depends on the coverage of routine death surveillance [death registration along with medical certification of cause of death (MCCD)] and the errors in MCCD. In India, the coverage of routine death surveillance is 18.1%. This is compounded by the fact that COVID-19 death reporting is focused among reported cases and the case detection ratio is low. To adjust for the coverage of routine death surveillance and errors in MCCD, we calculated a correction (multiplication) factor at national and state level to produce an estimated number of COVID-19 deaths. As on July 31, 2020, we calculated the infection fatality ratio (IFR) for India (0.58:100–1.16:100) using these estimated COVID-19 deaths; this is comparable with the IFR range in countries with near perfect routine death surveillance. We recommend the release of excess deaths data during COVID-19 (at least in states with high death registration) and post-mortem COVID-19 testing as a surveillance activity for a better understanding of under-reporting. In its absence, we should adjust reported COVID-19 deaths for the coverage of routine death surveillance and errors in MCCD. This way we will have a clear idea of the true burden of deaths and our public health response will never be inadequate. We recommend that “reported” or “estimated” is added before the COVID-19 death data and related indicators for better clarity and interpretation.

  12. f

    Data from: Change in mortality rates of respiratory disease during the...

    • datasetcatalog.nlm.nih.gov
    • tandf.figshare.com
    Updated Mar 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lu, Yan; Huang, Chunyan; Wang, Linchi; Zhang, Jun; Xu, Jianrong; Wei, Xiaolin; Zhang, Zhengji; Hua, Yujie (2021). Change in mortality rates of respiratory disease during the COVID-19 pandemic [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000927808
    Explore at:
    Dataset updated
    Mar 31, 2021
    Authors
    Lu, Yan; Huang, Chunyan; Wang, Linchi; Zhang, Jun; Xu, Jianrong; Wei, Xiaolin; Zhang, Zhengji; Hua, Yujie
    Description

    This study explored the change in mortality rates of respiratory disease during the corona virus disease 2019 (COVID-19) pandemic. Death data of registered residents of Suzhou from 2014 to 2020 were collected and the weekly mortality rates due to respiratory disease and all deaths were analyzed. The differences in mortality rates during the pandemic and the same period in previous years were compared. Before the pandemic, the crude mortality rate (CMR) and standardized mortality rate (SMR) of Suzhou residents including respiratory disease, were not much different from those in previous years. During the emergency period, the CMR of Suzhou residents was 180.2/100,000 and the SMR was 85.5/100,000, decreasing by 9.1% and 14.6%, respectively; the CMR of respiratory disease was 16.4/100,000 and the SMR was 6.8/100,000, down 41.4% and 44.9%, respectively. Regardless of the mortality rates of all deaths or respiratory disease, the rates were higher in males than in females, although males had aslightly greater decrease in all deaths during the emergency period compared with females, and the opposite was true for respiratory disease. During the pandemic, the death rate of residents decreased, especially that due to respiratory disease.

  13. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  14. Data_Sheet_8_Toward a Country-Based Prediction Model of COVID-19 Infections...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tianshu Gu; Lishi Wang; Ning Xie; Xia Meng; Zhijun Li; Arnold Postlethwaite; Lotfi Aleya; Scott C. Howard; Weikuan Gu; Yongjun Wang (2023). Data_Sheet_8_Toward a Country-Based Prediction Model of COVID-19 Infections and Deaths Between Disease Apex and End: Evidence From Countries With Contained Numbers of COVID-19.pdf [Dataset]. http://doi.org/10.3389/fmed.2021.585115.s008
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Tianshu Gu; Lishi Wang; Ning Xie; Xia Meng; Zhijun Li; Arnold Postlethwaite; Lotfi Aleya; Scott C. Howard; Weikuan Gu; Yongjun Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complexity of COVID-19 and variations in control measures and containment efforts in different countries have caused difficulties in the prediction and modeling of the COVID-19 pandemic. We attempted to predict the scale of the latter half of the pandemic based on real data using the ratio between the early and latter halves from countries where the pandemic is largely over. We collected daily pandemic data from China, South Korea, and Switzerland and subtracted the ratio of pandemic days before and after the disease apex day of COVID-19. We obtained the ratio of pandemic data and created multiple regression models for the relationship between before and after the apex day. We then tested our models using data from the first wave of the disease from 14 countries in Europe and the US. We then tested the models using data from these countries from the entire pandemic up to March 30, 2021. Results indicate that the actual number of cases from these countries during the first wave mostly fall in the predicted ranges of liniar regression, excepting Spain and Russia. Similarly, the actual deaths in these countries mostly fall into the range of predicted data. Using the accumulated data up to the day of apex and total accumulated data up to March 30, 2021, the data of case numbers in these countries are falling into the range of predicted data, except for data from Brazil. The actual number of deaths in all the countries are at or below the predicted data. In conclusion, a linear regression model built with real data from countries or regions from early pandemics can predict pandemic scales of the countries where the pandemics occur late. Such a prediction with a high degree of accuracy provides valuable information for governments and the public.

  15. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  16. D

    Provisional COVID-19 Deaths: Focus on Ages 0-18 Years

    • data.cdc.gov
    • data.virginia.gov
    • +5more
    csv, xlsx, xml
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional COVID-19 Deaths: Focus on Ages 0-18 Years [Dataset]. https://data.cdc.gov/widgets/nr4s-juj3?mobile_redirect=true
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).

    Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.

  17. COVID-19 Worldwide Daily Data

    • kaggle.com
    zip
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19
    Explore at:
    zip(469881 bytes)Available download formats
    Dataset updated
    Aug 28, 2020
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  18. COVID Death Rates

    • kaggle.com
    zip
    Updated Apr 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sharon Spaulding (2021). COVID Death Rates [Dataset]. https://www.kaggle.com/sharonspaulding/covid-death-rates
    Explore at:
    zip(2949 bytes)Available download formats
    Dataset updated
    Apr 1, 2021
    Authors
    Sharon Spaulding
    Description

    Dataset

    This dataset was created by Sharon Spaulding

    Contents

  19. c

    Data from: Getting to Accuracy: Measuring COVID-19 by Mortality Rates and...

    • clevelandfed.org
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2020). Getting to Accuracy: Measuring COVID-19 by Mortality Rates and Percentage Changes [Dataset]. https://www.clevelandfed.org/publications/cleveland-fed-district-data-brief/2020/cfddb-20200408-getting-to-accuracy
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    Relying on confirmed cases to compare the trajectory of the COVID-19 epidemic in different countries has significant limitations. Measuring mortality rates and their percentage changes proves to be a superior way to track the progression of the disease. The method shows that, as of April 5, the epidemic in the United States has a similar mortality rate to those in Europe and is more deadly than in China and South Korea.

  20. d

    Monthly COVID-19 Death Rates per 100,000 Population by Age Group, Race and...

    • datasets.ai
    • data.virginia.gov
    • +3more
    23, 40, 55, 8
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2023). Monthly COVID-19 Death Rates per 100,000 Population by Age Group, Race and Ethnicity, Sex, and Region [Dataset]. https://datasets.ai/datasets/monthly-covid-19-death-rates-per-100000-population-by-age-group-race-and-ethnicity-sex-and
    Explore at:
    55, 23, 8, 40Available download formats
    Dataset updated
    Nov 22, 2023
    Dataset authored and provided by
    U.S. Department of Health & Human Services
    Description

    Monthly COVID-19 death rates per 100,000 population stratified by age group, race/ethnicity, sex, and region

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
Organization logo

COVID-19 death rates in the United States as of March 10, 2023, by state

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

Search
Clear search
Close search
Google apps
Main menu