Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
GoalsSymbolize dense point features.Add and label reference data.Configure a layout for print maps.
In this tutorial, you will explore some of the many ways to work with image services in ArcGIS Pro using data from the ArcGIS Living Atlas of the World.
Learn ArcGIS lesson gallery with filter for "COVID" applied._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
NOTE: An updated Introduction to ArcGIS GeoEvent Server Tutorial is available here. It is recommended you use the new tutorial for getting started with GeoEvent Server. The old Introduction Tutorial available on this page is relevant for 10.8.x and earlier and will not be updated.The Introduction to GeoEvent Server Tutorial (10.8.x and earlier) introduces you to the Real-Time Visualization and Analytic capabilities of ArcGIS GeoEvent Server. GeoEvent Server allows you to:
Incorporate real-time data feeds in your existing GIS data and IT infrastructure. Perform continuous processing and analysis on streaming data, as it is received. Produce new streams of data that can be leveraged across the ArcGIS system.
Once you have completed the exercises in this tutorial you should be able to:
Use ArcGIS GeoEvent Manager to monitor and perform administrative tasks. Create and maintain GeoEvent Service elements such as inputs, outputs, and processors. Use GeoEvent Simulator to simulate event data into GeoEvent Server. Configure GeoEvent Services to append and update features in a published feature service. Work with processors and filters to enhance and direct GeoEvents from event data.
The knowledge gained from this tutorial will prepare you for other GeoEvent Server tutorials available in the ArcGIS GeoEvent Server Gallery.
Releases
Each release contains a tutorial compatible with the version of GeoEvent Server listed. The release of the component you deploy does not have to match your version of ArcGIS GeoEvent Server, so long as the release of the component is compatible with the version of GeoEvent Server you are using. For example, if the release contains a tutorial for version 10.6; this tutorial is compatible with ArcGIS GeoEvent Server 10.6 and later. Each release contains a Release History document with a compatibility table that illustrates which versions of ArcGIS GeoEvent Server the component is compatible with.
NOTE: The release strategy for ArcGIS GeoEvent Server components delivered in the ArcGIS GeoEvent Server Gallery has been updated. Going forward, a new release will only be created when
a component has an issue,
is being enhanced with new capabilities,
or is not compatible with newer versions of ArcGIS GeoEvent Server.
This strategy makes upgrades of these custom
components easier since you will not have to
upgrade them for every version of ArcGIS GeoEvent Server
unless there is a new release of
the component. The documentation for the
latest release has been
updated and includes instructions for updating
your configuration to align with this strategy.
Latest
Release 7 - March 30, 2018 - Compatible with ArcGIS GeoEvent Server 10.6 and later.
Previous
Release 6 - January 12, 2018 - Compatible with ArcGIS GeoEvent Server 10.5 thru 10.8.
Release 5 - July 30, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 4 - July 30, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x.
Release 3 - April 24, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x. Not available.
Release 2 - January 22, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x. Not available.
Release 1 - April 11, 2014 - Compatible with ArcGIS GeoEvent Server 10.2.x.
The ArcGIS INSPIRE Open Data solution is designed for European public data authorities to publish, share, and use streamlined INSPIRE data and services as open data. This story map describes the capabilities provided in the solution and how you can leverage these capabilities in your organization.When the INSPIRE community started talking about simplifying and mainstreaming technical requirements, we saw an exciting opportunity to look at INSPIRE in a modern context. INSPIRE Open Data supports the European Strategy for Data. It makes INSPIRE data easier to use through Alternative Encodings and helps you apply FAIR data principles (findable, accessible, interoperable, and reusable) consistent with the PSI-2/Open Data Directive.
This tutorial requires the Image Analyst Extension and focuses on using the FMV player in Pro to view video. Learn more about all the capabilities of FMV.
Overview and How-to Tutorial Videos for Using NEWTS Data Video 1: Overview of NEWTS Database Video 2: How-to tutorial for EPA Flue Gas Desulfurization (FGD) Effluent NEWTS dataset Video 3: How-to tutorial for USGS Produced Waters NEWTS dataset Video 4: How-to tutorial for EPA Ash NEWTS dataset Video 5: How-to tutorial for Quillinan, et al 2018 DOE Geothermal Technology Office REE dataset Video 6: Tutorial video on navigating the NEWTS Dashboard, with an overview of NEWTS and navigating between the NEWTS Dashboard and Datasets (https://netl-doe.maps.arcgis.com/apps/dashboards/a5fa4192f7c6478dab3d6180d9c30b84) Video 7: Additional tutorial video on navigating the NEWTS Dashboard and investigating specific data points in the Dashboard and Datasets Video 8: Re-record of recent webinar giving an overview of the NEWTS Database and Dashboard, including interacting with the NEWTS Dashboard, locating specific data points, and finding the relevant streams in the NEWTS Database and datasets on EDX. Includes overview of the datasets, case studies, and steps for taking stream data from the database and modeling stream data in OLI Studio and Geochemist's Workbench. Note: Video 3 tutorial is also applicable to the USGS Brackish Water NEWTS dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Thinking Spatially Using GIS
Thinking Spatially Using GIS is a 1:1 set of instructional
materials for students that use ArcGIS Online to teach basic geography concepts
found in upper elementary school and above.
Each module has both a teacher and student file.
The United States population has grown quickly during the past several hundred years. Keeping track of the nation’s population dates to the country’s origins. The U.S. Constitution adopted in 1787 called for a population count every 10 years, starting in 1790. This process, called the census, would keep track of the population, its activities, and its movements. More importantly, the census would ensure that each state received fair and accurate representation in the U.S. House of Representatives.
The 1790 Census recorded almost 4 million people. By comparison, the 2000 Census counted almost 300 million. That’s more than 70 times the number of people that lived in the United States 210 years ago! It is estimated that by 2050 there will be 392 million people living in the United States! The United States now is the third most populated country in the world after China and India.
The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Thinking Spatially Using GIS
Thinking Spatially Using GIS is a 1:1 set of instructional
materials for students that use ArcGIS Online to teach basic geography concepts
found in upper elementary school and above.
Each module has both a teacher and student file.
The zoo in your community is so popular and successful that it has decided to expand. After careful research, zookeepers have decided to add an exotic animal to the zoo population. They are holding a contest for visitors to guess what the new animal will be. You will use skills you have learned in classification and analysis to find what part of the world the new animal is from and then identify it.
To help you get started, the zoo has provided a list of possible animals. A list of clues will help you choose the correct answers. You will combine information you have in multiple layers of maps to find your answer.
The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
Instructions on how to search ArcGIS Online for a layer containing Plate Boundaries (published / owned by the Education Team at Esri Canada) and then to add the Plate Boundaries layer to a Web Map.Document designed to support the Natural Hazards - Earthquakes story map
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.
This activity requires you to comprehensively apply spatial analysis, with direction, to solve a geographic problem.The Problem - AIDS a Global Phenomenon.Work with the United Nations World Health Organisation (WHO) to provide a report that describes the distribution of AIDS and explores some of the contributing factors to this pattern.
PurposeThis job aid will lead the GIS analyst through the process of manually creating an incident map journal and how to create additional pages for the journal. This process should be used at the beginning of an incident and then the journal should be maintained to assure it remains viable. The incident map journal serves as a curated center to place maps, apps, and dashboards relevant to the incident.
This job aid assumes a working knowledge of how to create maps, apps, and dashboards on ArcGIS Online. For a tutorial, go to the Create apps from maps - ArcGIS Tutorial.Example workflow for the Geo-Enabled Plans Session at InSPIRE. Job Aid developed by FEMA GIS to enable GIS analysts to rapidly spin-up a standardized incident journal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowdsourcing is a way to obtain information from the public by enlisting the services of the general public or volunteers via the Internet. This can be a valuable source of information during a disaster if it is done in a way that answers important questions, for instance:
Where are roads obstructed by standing water?
What homes have individuals that need assistance evacuating?
Where are debris that needs to be removed?
Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations Staff
Problem: The emergency management agency has requested that you prepare a crowdsourcing solution in advance of the next disaster. The data collected must be structured in a way so that it is informative and actionable for decision makers. Your crowdsourcing app should be:
Fast and easy to use for the Public.
The database behind it should contain structured information that answers specific questions for emergency managers (e.g. Where are the hazards? How severe is it? Where should we focus our resources?).
Allows for submitting attachments such as photos.
Solution: Survey123 Web FormRequirements: You will need a license for ArcGIS Online to complete this tutorial.Note: This tutorial works with the Public Information Application Tutorial.
Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.