Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Quick Guide to Mapping Occurrences in QGIS
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
SSURGO PortalSSURGO Bulk Downloader QGIS Tool
In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. As an alternative to using the ‘Swiss Geo Downloader’ plugin, the DTM can be obtained directly from Swisstopo. In this tutorial we explain step by step how to download the necessary DTM from the Swisstopo Website, and how to use it in QGIS for the digital planning of a cable line using the plugin ‘Seilaplan’. Please note that the tutorial language is German!
Link to the elevation model on the swisstopo website: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#technische_details
Link to the rope map website: https://seilaplan.wsl.ch
Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Als Alternative zum Swiss Geo Downloader erklären wir in diesem Tutorial Schritt für Schritt, wie man das nötige Höhenmodell von der Swisstopo Webseite herunterladen und in QGIS zur Seillinienplanung verwenden kann.
Link zum Höhenmodell auf der swisstopo Webseite: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#technische_details
Link zur Seilaplan-Website: https://seilaplan.wsl.ch
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset shows the results of mapping the connectivity of key values (natural heritage, indigenous heritage, social and historic and economic) of the Great Barrier Reef with its neighbouring regions (Torres Strait, Coral Sea and Great Sandy Strait). The purpose of this mapping process was to identify values that need joint management across multiple regions. It contains a spreadsheet containing the connection information obtained from expert elicitation, all maps derived from this information and all GIS files needed to recreate these maps. This dataset contains the connection strength for 59 attributes of the values between 7 regions (GBR Far Northern, GBR Cairns-Cooktown, GBR Whitsunday-Townsville, GBR Mackay-Capricorn, Torres Strait, Coral Sea and Great Sandy Strait) based on expert opinion. Each connection is assessed based on its strength, mechanism and confidence. Where a connection was known to not exist between two regions then this was also explicitly recorded. A video tutorial on this dataset and its maps is available from https://vimeo.com/335053846.
Methods:
The information for the connectivity maps was gathered from experts (~30) during a 3-day workshop in August 2017. Experts were provided with a template containing a map of Queensland and the neighbouring seas, with an overlay of the regions of interest to assess the connectivity. These were Torres Strait, GBR:Far North Queensland, GBR:Cairns to Cooktown, GBC: Townsville to Whitsundays, GBR: Mackay to Capricorn Bunkers and Great Sandy Strait (which includes Hervey bay). A range of reference maps showing locations of the values were provided, where this information could be obtained. As well as the map the template provided 7x7 table for filling in the connectivity strength and connection type between all combinations of these regions. The experts self-organised into groups to discuss and complete the template for each attribute to be mapped. Each expert was asked to estimate the strength of connection between each region as well as the connection mechanism and their confidence in the information. Due to the limited workshop time the experts were asked to focus on initially recording the connections between the GBR and its neighbouring regions and not to worry about the internal connections in the GBR, or long-distance connections along the Queensland coast. In the second half of the workshop the experts were asked to review the maps created and expand on the connections to include those internal to the GBR. After the workshop an initial set of maps were produced and reviewed by the project team and a range of issues were identified and resolved. Additional connectivity maps for some attributes were prepared after the workshop by the subject experts within the project team. The data gathered from these templates was translated into a spreadsheet, then processing into the graphic maps using QGIS to present the connectivity information. The following are the value attributes where their connectivity was mapped: Seagrass meadows: pan-regional species (e.g. Halophila spp. and Halodule spp.) Seagrass meadows: tropical/sub-tropical (Cymodocea serrulata, Syringodium isoetifolium) Seagrass meadows: tropical (Thalassia, Cymodocea, Thalassodendron, Enhalus, Rotundata) Seagrass meadows: Zostera muelleri Mangroves & saltmarsh Hard corals Crustose coralline algae Macroalgae Crown of thorns starfish larval flow Acropora larval flow Casuarina equisetifolia & Pandanus tectorius Argusia argentia Pisonia grandis: cay vegetation Inter-reef gardens (sponges + gorgonians) (Incomplete) Halimeda Upwellings Pelagic foraging seabirds Inshore and offshore foraging seabirds Migratory shorebirds Ornate rock lobster Yellowfin tuna Black marlin Spanish mackerel Tiger shark Grey nurse shark Humpback whales Dugongs Green turtles Hawksbill turtles Loggerhead turtles Flatback turtles Longfin & Shortfin Eels Red-spot king prawn Brown tiger prawn Eastern king prawns Great White Shark Sandfish (H. scabra) Black teatfish (H. whitmaei) Location of sea country Tangible cultural resources Location of place attachment Location of historic shipwrecks Location of places of social significance Location of commercial fishing activity Location of recreational use Location of tourism destinations Australian blacktip shark (C. tilstoni) Barramundi Common black tip shark (C. limbatus) Dogtooth tuna Grey mackerel Mud crab Coral trout (Plectropomus laevis) Coral trout (Plectropomus leopardus) Red throat emperor Reef manta Saucer scallop (Ylistrum balloti) Bull shark Grey reef shark
Limitations of the data:
The connectivity information in this dataset is only rough in nature, capturing the interconnections between 7 regions. The connectivity data is based on expert elicitation and so is limited by the knowledge of the experts that were available for the workshop. In most cases the experts had sufficient knowledge to create robust maps. There were however some cases where the knowledge of the participants was limited, or the available scientific knowledge on the topic was limited (particularly for the ‘inter-reefal gardens’ attribute) or the exact meaning of the value attribute was poorly understood or could not be agreed up on (particularly for the social and indigenous heritage maps). This information was noted with the maps. These connectivity maps should be considered as an initial assessment of the connections between each of the regions and should not be used as authoritative maps without consulting with additional sources of information. Each of the connectivity links between regions was recorded with a level of confidence, however these were self-reported, and each assessment was performed relatively quickly, with little time for reflection or review of all the available evidence. It is likely that in many cases the experts tended to have a bias to mark links with strong confidence. During subsequent revisions of some maps there were substantial corrections and adjustments even for connections with a strong confidence, indicating that there could be significant errors in the maps where the experts were not available for subsequent revisions. Each of the maps were reviewed by several project team members with broad general knowledge. Not all connection combinations were captured in this process due to the limited expert time available. A focus was made on capturing the connections between the GBR and its neighbouring regions. Where additional time was available the connections within 4 regions in the GBR was also captured. The connectivity maps only show connections between immediately neighbouring regions, not far connections such as between Torres Strait and Great Sandy Strait. In some cases the connection information for longer distances was recorded from the experts but not used in the mapping process. The coastline polygon and the region boundaries in the maps are not spatially accurate. They were simplified to make the maps more diagrammatic. This was done to reduce the chance of misinterpreting the connection arrows on the map as being spatially explicit.
Format:
This dataset is made up of a spreadsheet that contains all the connectivity information recorded from the expert elicitation and all the GIS files needed to recreate the generated maps.
original/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_Master_v2018-09-05.xlsx: ‘Values connectivity’: This sheet contains the raw connectivity codes transcribed from the templates produced prepared by the subject experts. This is the master copy of the connection information. Subsequent sheets in the spreadsheet are derived using formulas from this table. 1-Vertical-data: This is a transformation of the ‘Values connectivity’ sheet so that each source and destination connection is represented as a single row. This also has the connection mechanism codes split into individual columns to allow easier processing in the map generation. This sheet pulls in the spatial information for the arrows on the maps (‘LinkGeom’ attribute) or crosses that represent no connections (‘NoLinkGeom’) using lookup tables from the ‘Arrow-Geom-LUT’ and ‘NoConnection-Geom-LUT’ sheets. 2.Point-extract: This contains all the ‘no connection’ points from the ‘Values connectivity’ dataset. This was saved as working/ GBR_NESP-TWQ-3-3-3_Seascape-connectivity_no-con-pt.csv and used by the QGIS maps to draw all the crosses on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘NoLinkGeom’ attribute is used to filter out all line features, by unchecking blank rows in the ‘NoLinkGeom’ filter. 2.Line-extract: This contains all the ‘connections’ between regions from the ‘Values connectivity’ dataset. This was saved as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_arrows.csv and used by the QGIS maps to draw all the arrows on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘LinkGeom’ attribute is used to filter out all point features, by unchecking blank rows in the ‘LinkGeom’ filter. Map-Atlas-Settings: This contains the metadata for each of the maps generated by QGIS. This sheet was exported as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_map-atlas-settings.csv and used by QGIS to drive its Atlas feature to generate one map per row of this table. The AttribID is used to enable and disable the appropriate connections on the map being generated. The WKT attribute (Well Known Text) determines the bounding box of the map to be generated and the other attributes are used to display text on the map. map-image-metadata: This table contains metadata descriptions for each of the value attribute maps. This metadata was exported as a CSV and saved into the final generated JPEG maps using the eAtlas Image Metadata Editor Application
The first edition of this field guide was published in2009 and has been used by a broad spectrum ofhumanitarian and development organisations seekingpractical and low cost ways to exploit geospatialmethods in their work. In response to demand,MapAction is delighted to issue this second edition.Several chapters are expanded to meet users’ requestsfor more detail, particularly on where to find map data. Also, the Guide nowgives step-by-step guidance on the use of Quantum GIS (QGIS), an opensource software toolkit that has gone from strength to strength in its reliabilityand appropriateness for field use. This guide has been compiled from MapAction’s experience in disasterpreparedness and relief operations drawn from many training sessions anddisaster emergency missions; however every situation is different. We greatlyvalue comments and suggestions, and we will do our best to answer yourquestions about using GIS and GPS for humanitarian mapping in the field:please email info@mapaction.org. To download, click the PDF button (4mb). This is the Low Res Version.
A 40-minute tutorial to use OGC webservices offered by the Mission Atlantic GeoNode in your data analysis. The workshop makes use of Python Notebooks and common GIS Software (ArcGIS and QGIS), basic knowledge of Python and/or GIS software is recommended. • Introduction to OGC services • Search through metadata using the OGC Catalogue Service (CSW) • Visualize data using OGC Web Mapping Service (WMS) • Subset and download data using OGC Web Feature and Coverage Services (WFS/WCS) • Use OGC services with QGIS and/or ArcGIS
Liste des 144 tutoriels de la chaîne Youtube TutorielGeo : https://www.youtube.com/user/tutorielgeo/featured
Plus de 200 vidéos tutoriel gratuites sur Qgis, Postgis, Geoserver, Pentaho, Talend, Google Earth Pro... ainsi que sur les technologies webmapping et le gestion de base de données : Oracle, Mysql, SQL Server. Voici le lien vers le store : https://play.google.com/store/apps/details?id=com.tutorielgeo.mobileapps Voici le lien vers le site internet : https://tutorielgeo.com Voici le lien de la chaîne Youtube :https://www.youtube.com/user/tutorielgeo Voici le lien vers la page facebook : https://www.facebook.com/Tutorielgeo-Geomatic-Tutorial-GIS-Tutorial-Webmapping-Tutorial-325658277554574/ Voici le lien vers le compte twitter : https://twitter.com/TutorielGeo Voici le lien vers la page google plus : https://plus.google.com/b/117203987416263637144/+tutorielgeo/posts
Intermediate level curves of 10 m equidistance representing altitude over the Grand Est Region. These data were generated from the IGN ALTI comics and this tutorial. https://architips.fr/qgis-how-to-obtain-the-level curves/
Link to Seilaplan website: https://seilaplan.wsl.ch Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. In diesem Tutorialvideo zeigen wir, wie man mit dem QGIS-Plugin Virtuelles Raster mehrere DHM-Kacheln zu einem einzigen Rasterfile zusammenfügen und abspeichern kann. Für die Seillinienplanung mit Seilaplan muss nun nur noch eine Datei, mein neues virtuelles Raster, ausgewählt werden. Link zur Seilaplan-Website: https://seilaplan.wsl.ch
An overview of benthic habitat surveys in Western Australia, combining surveys from multiple State Government agencies, research institutions and Universities. Disclaimer: The map is in development and does not show real or comprehensive survey data until this message disappears. Contributing data Attendees of the Managing Coastal Vulnerability workshop can: Register your account and contact us. We will give you write permission by making you admin or editor of your organisation, and member of the Habitat Sampling Initiative Group. Add metadata for your data by creating a dataset, attach a GeoJSON (QGIS video tutorial, save as CRS EPSG 4326/WGS84) or KML file of your surveyed transects (including survey date or period in site attributes if possible) as resources, and add the dataset to the group Habitat Sampling Initiative. Add the link to your access-restricted data on Pawsey as another resource to the dataset. Add any other public data resource here if and when appropriate. Use the CKAN API to upload metadata from your existing catalogues following these examples. Discovering data The following resources give an interactive overview of all Habitat Sampling Initiative datasets:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
Credits: University of Vermont Spatial Analysis Laboratory in collaboration with the City of Boston, Trust for Public Lands, and City of Cambridge.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Study area
The Kalmthoutse Heide is a nature reserve situated north of Kalmthout, in the province of Antwerp, Flanders, Belgium. It is part of the Cross-Border Nature Park De Zoom - Kalmthoutse Heide in the Netherlands and Belgium. The Kalmthoutse Heide is managed by the Flemish Agency for Nature and Forest and consists of wet and dry heathlands, inland dunes, forests and moorland pools. In this area, there is particular interest in monitoring the encroachment of the heathlands by Molinia caerulea and Campylopus introflexus.
Data collection
Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2015 and 2016 (8 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel.
Data processing
The raw data were processed to Digital Surface Models and orthophotos by the Flemish Institute for Technological Research (VITO) in 2017. Images with coarse GPS coordinates were imported and processed in Agisoft PhotoScan Pro 1.4.x, a structure-from-motion (SfM) based photogrammetry software program. After extraction and matching of tie points, a bundle adjustment leads to a sparse point cloud and a refined set of camera position and orientation values. Ground control points (either artificially installed markers on the terrain, or other photo-identifiable points, measured on the ground with RTK GNSS) were used to further refine the camera calibration and obtain a pixel-level georeferencing accuracy. From there, a point cloud densification and classification into ground and non-ground points was performed, leading to a rasterized digital surface model (DSM) and digital terrain model (DTM). Finally, a true orthomosaic was projected onto the DTM.
Coordinate reference system
All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72.
Files
Raw flight data: images and logs collected by the drone during flight. These files are zipped per flight, with the date (yyyymmdd) and flight number (x) indicated in the file name (flight_yyyymmdd_KH_x.zip).
Processed data: Digital Surface Models (filename_DSM.tif) and orthophotos (filename_Ortho.tif) stitched together from the raw data. The included flights are indicated in the file name (e.g. 3 flights for 20150717_KH_1-3_DSM.tif).
Ground control points: temporary ground control points were placed for the first flights on 2015-07-17 (visible in 20150717_KH_1-3_Ortho.tif). Coordinates for these are available in GCP_20150717_KH.tsv.
Cloud Optimized GeoTIFF
The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150717_KH_1-3_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150717_KH_1-3_Ortho.tif RGB
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151020_KH_1-2_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151020_KH_1-2_Ortho.tif RGB
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151020_KH_3_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151020_KH_3_Ortho.tif RGB
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160205_KH_1-2_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160205_KH_1-2_Ortho.tif RGB
See this page for an overview of public INBO RPAS data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Study area
The Zwin is a nature reserve situated along the Belgian North Sea coast, northeast of Knokke, in the province of West-Flanders, Flanders, Belgium. The area is managed by the Flemish Agency for Nature and Forest and consists of a tidal marsh, coastal dunes with Ammophila arenaria, dune grasslands and/or shrub (Hippophae rhamnoides, Salix repens), and a transitional grassland zone that stretches from the inner edge of the coastal dunes into the polders.
Data collection
Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2014 and 2015 (15 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel. CIR (color-infrared) data were acquired using a NIR-enabled Ricoh GR Digital IV camera, with the following info bands: 1: NIR, 2: red, 3: green, 4: alpha channel.
Data processing
The raw data were processed to Digital Surface Models and orthophotos by the Flemish Institute for Technological Research (VITO) in 2017. Images with coarse GPS coordinates were imported and processed in Agisoft PhotoScan Pro 1.4.x, a structure-from-motion (SfM) based photogrammetry software program. After extraction and matching of tie points, a bundle adjustment leads to a sparse point cloud and a refined set of camera position and orientation values. Ground control points (either artificially installed markers on the terrain, or other photo-identifiable points, measured on the ground with RTK GNSS) were used to further refine the camera calibration and obtain a pixel-level georeferencing accuracy. From there, a point cloud densification and classification into ground and non-ground points was performed, leading to a rasterized digital surface model (DSM) and digital terrain model (DTM). Finally, a true orthomosaic was projected onto the DTM.
Coordinate reference system
All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72
.
Files
yyyymmdd
) and flight number (x
) indicated in the file name (flight_yyyymmdd_Zwin_x.zip
).filename_DSM.tif
) and orthophotos (filename_Ortho.tif
) stitched together from the raw data. The included flights are indicated in the file name (e.g. 6 flights for 20150709_Zwin_1-3_20150710_Zwin_1-3_DSM.tif
).GCP_20140407_Zwin_fixed.tsv
. These GCPs are visible (but fading over time) in all orthophotos except 20151012_Zwin_1-4_Ortho.tif
which covers a different area. Additional temporary GCPs were placed on 2014-04-07, 2014-04-10 and 2015-07-09 (visible in orthophotos of those dates), coordinates of which are available in the respective GCP_yyyymmdd_Zwin.tsv
file.Cloud Optimized GeoTIFF
The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20140407_Zwin_1-2_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20140407_Zwin_1-2_Ortho.tif
CIRhttp://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20140410_Zwin_1-3_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20140410_Zwin_1-3_Ortho.tif
CIRhttp://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150709_Zwin_1-3_20150710_Zwin_1-3_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150709_Zwin_1-3_20150710_Zwin_1-3_Ortho.tif
RGBhttp://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151012_Zwin_1-4_DSM.tif
http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151012_Zwin_1-4_Ortho.tif
RGBSee this page for an overview of public INBO RPAS data.
The classification of point cloud datasets to identify distribution wires is useful for identifying vegetation encroachment around power lines. Such workflows are important for preventing fires and power outages and are typically manual, recurring, and labor-intensive. This model is designed to extract distribution wires at the street level. Its predictions for high-tension transmission wires are less consistent with changes in geography as compared to street-level distribution wires. In the case of high-tension transmission wires, a lower ‘recall’ value is observed as compared to the value observed for low-lying street wires and poles.Using the modelFollow the guide to use the model. The model can be used with ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.InputThe model accepts unclassified point clouds with point geometry (X, Y and Z values). Note: The model is not dependent on any additional attributes such as Intensity, Number of Returns, etc. This model is trained to work on unclassified point clouds that are in a projected coordinate system, in which the units of X, Y and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: Classcode Class Description 0 Background Class 14 Distribution Wires 15 Distribution Tower/PolesApplicable geographiesThe model is expected to work within any geography. It's seen to produce favorable results as shown here in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Model architectureThis model uses the RandLANet model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Background (0) 0.999679 0.999876 0.999778 Distribution Wires (14) 0.955085 0.936825 0.945867 Distribution Poles (15) 0.707983 0.553888 0.621527Training dataThis model is trained on manually classified training dataset provided to Esri by AAM group. The training data used has the following characteristics: X, Y, and Z linear unitmeter Z range-240.34 m to 731.17 m Number of Returns1 to 5 Intensity1 to 4095 Point spacing0.2 ± 0.1 Scan angle-42 to +35 Maximum points per block20000 Extra attributesNone Class structure[0, 14, 15]Sample resultsHere are a few results from the model.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This is an update of maps produced by Sanderman et al (2018). The improvements to the 3D spatial prediction include:
To open map in QGIS or similar, drag and drop the "mangroves_dSOC_0_100cm_30m.vrt" file. You can than add also the gpkg file contain the training points. A preview (WMS) of the predictions is available here.
Production steps (ensemble predictions using SuperLearner) are explained in detail at:
Produced for the purpose of Mangrove Restoration Potential Map funded by The Nature Conservancy and IUCN. Contact TNC: Emily Landis <elandis@TNC.ORG>. Contact IUCN / University of Cambridge: Thomas Worthington <taw52@cam.ac.uk>.
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.