Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset has three sentiments namely, negative, neutral, and positive. It contains two fields for the tweet and label.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Twitter_Sentiment_Analysis_/main/twitt.jpg" alt="">
Twitter is an online Social Media Platform where people share their their though as tweets. It is observed that some people misuse it to tweet hateful content. Twitter is trying to tackle this problem and we shall help it by creating a strong NLP based-classifier model to distinguish the negative tweets & block such tweets. Can you build a strong classifier model to predict the same?
Each row contains the text of a tweet and a sentiment label. In the training set you are provided with a word or phrase drawn from the tweet (selected_text) that encapsulates the provided sentiment.
Make sure, when parsing the CSV, to remove the beginning / ending quotes from the text field, to ensure that you don't include them in your training.
You're attempting to predict the word or phrase from the tweet that exemplifies the provided sentiment. The word or phrase should include all characters within that span (i.e. including commas, spaces, etc.)
The dataset is download from Kaggle Competetions:
https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
because of COVID-19
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.
Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.
"I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.
I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."
This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'
The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot
I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)
https://brightdata.com/licensehttps://brightdata.com/license
Our Twitter Sentiment Analysis Dataset provides a comprehensive collection of tweets, enabling businesses, researchers, and analysts to assess public sentiment, track trends, and monitor brand perception in real time. This dataset includes detailed metadata for each tweet, allowing for in-depth analysis of user engagement, sentiment trends, and social media impact.
Key Features:
Tweet Content & Metadata: Includes tweet text, hashtags, mentions, media attachments, and engagement metrics such as likes, retweets, and replies.
Sentiment Classification: Analyze sentiment polarity (positive, negative, neutral) to gauge public opinion on brands, events, and trending topics.
Author & User Insights: Access user details such as username, profile information, follower count, and account verification status.
Hashtag & Topic Tracking: Identify trending hashtags and keywords to monitor conversations and sentiment shifts over time.
Engagement Metrics: Measure tweet performance based on likes, shares, and comments to evaluate audience interaction.
Historical & Real-Time Data: Choose from historical datasets for trend analysis or real-time data for up-to-date sentiment tracking.
Use Cases:
Brand Monitoring & Reputation Management: Track public sentiment around brands, products, and services to manage reputation and customer perception.
Market Research & Consumer Insights: Analyze consumer opinions on industry trends, competitor performance, and emerging market opportunities.
Political & Social Sentiment Analysis: Evaluate public opinion on political events, social movements, and global issues.
AI & Machine Learning Applications: Train sentiment analysis models for natural language processing (NLP) and predictive analytics.
Advertising & Campaign Performance: Measure the effectiveness of marketing campaigns by analyzing audience engagement and sentiment.
Our dataset is available in multiple formats (JSON, CSV, Excel) and can be delivered via API, cloud storage (AWS, Google Cloud, Azure), or direct download.
Gain valuable insights into social media sentiment and enhance your decision-making with high-quality, structured Twitter data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Our dataset comprises 1000 tweets, which were taken from Twitter using the Python programming language. The dataset was stored in a CSV file and generated using various modules. The random module was used to generate random IDs and text, while the faker module was used to generate random user names and dates. Additionally, the textblob module was used to assign a random sentiment to each tweet.
This systematic approach ensures that the dataset is well-balanced and represents different types of tweets, user behavior, and sentiment. It is essential to have a balanced dataset to ensure that the analysis and visualization of the dataset are accurate and reliable. By generating tweets with a range of sentiments, we have created a diverse dataset that can be used to analyze and visualize sentiment trends and patterns.
In addition to generating the tweets, we have also prepared a visual representation of the data sets. This visualization provides an overview of the key features of the dataset, such as the frequency distribution of the different sentiment categories, the distribution of tweets over time, and the user names associated with the tweets. This visualization will aid in the initial exploration of the dataset and enable us to identify any patterns or trends that may be present.
Dataset Card for cardiffnlp/tweet_sentiment_multilingual
Dataset Summary
Tweet Sentiment Multilingual consists of sentiment analysis dataset on Twitter in 8 different lagnuages.
arabic english french german hindi italian portuguese spanish
Supported Tasks and Leaderboards
text_classification: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.
Dataset Structure
Data Instances
An instance from… See the full description on the dataset page: https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains tweets labeled for sentiment analysis, categorized into Positive, Negative, and Neutral sentiments. The dataset includes tweet IDs, user metadata, sentiment labels, and tweet text, making it suitable for Natural Language Processing (NLP), machine learning, and AI-based sentiment classification research. Originally sourced from Kaggle, this dataset is curated for improved usability in social media sentiment analysis.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Financial Sentiment Analysis Dataset
Overview
This dataset is a comprehensive collection of tweets focused on financial topics, meticulously curated to assist in sentiment analysis in the domain of finance and stock markets. It serves as a valuable resource for training machine learning models to understand and predict sentiment trends based on social media discourse, particularly within the financial sector.
Data Description
The dataset comprises tweets… See the full description on the dataset page: https://huggingface.co/datasets/TimKoornstra/financial-tweets-sentiment.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
AfriSenti is the largest sentiment analysis benchmark dataset for under-represented African languages---covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and yoruba).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is an entity-level sentiment analysis dataset of twitter. Given a message and an entity, the task is to judge the sentiment of the message about the entity. There are three classes in this dataset: Positive, Negative and Neutral. We regard messages that are not relevant to the entity (i.e. Irrelevant) as Neutral.
Please use twitter_training.csv
as the training set and twitter_validation.csv
as the validation set. Top 1 classification accuracy is used as the metric.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Sentiment Analysis Dataset is a dataset for emotional analysis, including large-scale tweet text collected from Twitter and emotional polarity (0=negative, 2=neutral, 4=positive) labels for each tweet, featuring automatic labeling based on emoticons.
2) Data Utilization (1) Sentiment Analysis Dataset has characteristics that: • Each sample consists of six columns: emotional polarity, tweet ID, date of writing, search word, author, and tweet body, and is suitable for training natural language processing and classification models using tweet text and emotion labels. (2) Sentiment Analysis Dataset can be used to: • Emotional Classification Model Development: Using tweet text and emotional polarity labels, we can build positive, negative, and neutral emotional automatic classification models with various machine learning and deep learning models such as logistic regression, SVM, RNN, and LSTM. • Analysis of SNS public opinion and trends: By analyzing the distribution of emotions by time series and keywords, you can explore changes in public opinion on specific issues or brands, positive and negative trends, and key emotional keywords.
Twitter Sentiment Meta-Analysis Dataset
Dataset Description
This dataset contains sentiment analysis results for English tweets collected between September 2009 and January 2010. The tweets were processed and analyzed using 10 different sentiment classifiers, with the final sentiment score derived from principal component analysis (PCA).
Source Data
Original Data: Cheng-Caverlee-Lee Twitter Scrape (Sept 2009 - Jan 2010) Number of Tweets: 138 690 Language:… See the full description on the dataset page: https://huggingface.co/datasets/agentlans/twitter-sentiment-meta-analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a large-scale, multilingual and longitudinal Twitter sentiment dataset sampled through distant supervision from the Twitter Stream Grab archive (https://archive.org/details/twitterstream). It covers the time period between January 2013 and June 2020 for 7 languages:- Arabic (ar)- German (de)- English (en)- Spanish (es)- French (fr)- Italian (it)- Chinese (zh)With the files in this repository, we provide tweet IDs that can be used to rehydrate the datasets by using the files available from the Twitter Stream Grab.Files are formatted as TSV files, with the following columns:date \t tweetid \t sentiment \t evidencewhere:- date is the day in which the tweet was posted.- tweetid is the ID of the tweet- sentiment is either pos or neg- evidence is the set of emojis or emoticons used to determine if the tweet was positive or negative.More details about the dataset can be found in the following paper (please cite the paper if you use the dataset):TBA
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This excel work book includes NRC sentiment analysis for all hashtags, #pride tweets, #lesbian tweets, #pride NRC scores, # lesbian NRC scores, all sentiment scores in the syuzhet package for #pride and lesbian, lexicon comparison, #lesbian subsamples and #pride subsamples.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.
The dataset holds 11,932 documents annotated with 3 labels:
sentiments = { "LABEL_0": "Bearish", "LABEL_1": "Bullish", "LABEL_2": "Neutral" }
The data was collected using the Twitter API. The current dataset supports the multi-class classification… See the full description on the dataset page: https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data introduction • Twitter-tweets-sentiment dataset is a dataset that aims to analyze tweet sentiment for Twitter and natural language processing.
2) Data utilization (1)Twitter-tweets-sentiment data has characteristics that: • The data consists of three columns, including emotion and text, and aims to block negative tweets through a powerful classification model. (2) Twitter-tweets-sentiment data can be used to: • Social Media Monitoring: Businesses and organizations can use data to monitor social media platforms and gauge public sentiment about a brand, product, event, or social issue. • Sentiment analysis: This dataset can be used to train models that classify the sentiment of tweets, which can help companies and researchers understand public opinion on a variety of topics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Cite as
Guerrero-Contreras, G., Balderas-DĂaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
This dataset was created by mehhrishi
Cite as Guerrero-Contreras, G., Balderas-DĂaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE. General Description This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others. Data Collection Method Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI. Dataset Content ID: A unique identifier for each tweet. text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters. polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral). favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer. retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer. user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False. user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False. user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False. user_followers_count: The current number of followers the account has. It is a non-negative integer. user_friends_count: The number of users that the account is following. It is a non-negative integer. user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer. user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer. user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False. user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False. Potential Use Cases This dataset is aimed at academic researchers and practitioners with interests in: Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language. Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers. Exploring correlations between user engagement metrics and sentiment in discussions about AI. Data Format and File Type The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments. License The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset has three sentiments namely, negative, neutral, and positive. It contains two fields for the tweet and label.