Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset comprises a set of Twitter accounts in Singapore that are used for social bot profiling research conducted by the Living Analytics Research Centre (LARC) at Singapore Management University (SMU). Here a bot is defined as a Twitter account that generates contents and/or interacts with other users automatically (at least according to human judgment). In this research, Twitter bots have been categorized into three major types:
Broadcast bot. This bot aims at disseminating information to general audience by providing, e.g., benign links to news, blogs or sites. Such bot is often managed by an organization or a group of people (e.g., bloggers). Consumption bot. The main purpose of this bot is to aggregate contents from various sources and/or provide update services (e.g., horoscope reading, weather update) for personal consumption or use. Spam bot. This type of bots posts malicious contents (e.g., to trick people by hijacking certain account or redirecting them to malicious sites), or promotes harmless but invalid/irrelevant contents aggressively.
This categorization is general enough to cater for new, emerging types of bot (e.g., chatbots can be viewed as a special type of broadcast bots). The dataset was collected from 1 January to 30 April 2014 via the Twitter REST and streaming APIs. Starting from popular seed users (i.e., users having many followers), their follow, retweet, and user mention links were crawled. The data collection proceeds by adding those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. Using this procedure, a total of 159,724 accounts have been collected. To identify bots, the first step is to check active accounts who tweeted at least 15 times within the month of April 2014. These accounts were then manually checked and labelled, of which 589 bots were found. As many more human users are expected in the Twitter population, the remaining accounts were randomly sampled and manually checked. With this, 1,024 human accounts were identified. In total, this results in 1,613 labelled accounts. Related Publication: R. J. Oentaryo, A. Murdopo, P. K. Prasetyo, and E.-P. Lim. (2016). On profiling bots in social media. Proceedings of the International Conference on Social Informatics (SocInfo’16), 92-109. Bellevue, WA. https://doi.org/10.1007/978-3-319-47880-7_6
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These Twitter user statistics will give you the complete story of where Twitter is at today and what the future looks like for the social media company.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a longitudinal Twitter dataset of 143K users during the period 2017-2021. The following is the detail of all the files:
1. user: This column represents the identifier for the user. Each row in the CSV corresponds to a specific user, and this column helps to track and differentiate between the users.
2. avg_topic_probability: This column contains the average probability of the topics for each user calculated across all of the tweets in order to compare users in a meaningful way. It represents the average likelihood that a particular user discusses various topics over the observed period.
3. maximum_topic_avg: This column holds the value of the highest average probability among all topics for each user. It indicates the topic that the user most frequently discusses, on average.
4. index_max_avg_topic_probability_200: This column specifies the index or identifier of the topic with the highest average probability out of 200 possible topics. It shows which topic (out of 200) the user discusses the most.
5. global_avg: This column includes the global average probability of topics across all users. It provides a baseline or overall average topic probability that can be used for comparative purposes.
6. max_global_avg: This column contains the maximum global average probability across all topics for all users. It identifies the most discussed topic across the entire user base.
7. index_max_global_avg: This column shows the index or identifier of the topic with the highest global average probability. It indicates which topic (out of 200) is the most popular across all users.
8. entropy_200_topic: This column represents the entropy of the topics for each user, calculated over 200 topics. Entropy measures the diversity or unpredictability in the user's discussion of topics, with higher entropy indicating more varied topic discussion.
In summary, these columns are used to analyze the topic engagement and preferences of users on a platform, highlighting the most frequently discussed topics, the variability in topic discussions, and how individual user behavior compares to overall trends.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This datasets is an extract of a wider database aimed at collecting Twitter user's friends (other accound one follows). The global goal is to study user's interest thru who they follow and connection to the hashtag they've used.
It's a list of Twitter user's informations. In the JSON format one twitter user is stored in one object of this more that 40.000 objects list. Each object holds :
avatar : URL to the profile picture
followerCount : the number of followers of this user
friendsCount : the number of people following this user.
friendName : stores the @name (without the '@') of the user (beware this name can be changed by the user)
id : user ID, this number can not change (you can retrieve screen name with this service : https://tweeterid.com/)
friends : the list of IDs the user follows (data stored is IDs of users followed by this user)
lang : the language declared by the user (in this dataset there is only "en" (english))
lastSeen : the time stamp of the date when this user have post his last tweet.
tags : the hashtags (whith or without #) used by the user. It's the "trending topic" the user tweeted about.
tweetID : Id of the last tweet posted by this user.
You also have the CSV format which uses the same naming convention.
These users are selected because they tweeted on Twitter trending topics, I've selected users that have at least 100 followers and following at least 100 other account (in order to filter out spam and non-informative/empty accounts).
This data set is build by Hubert Wassner (me) using the Twitter public API. More data can be obtained on request (hubert.wassner AT gmail.com), at this time I've collected over 5 milions in different languages. Some more information can be found here (in french only) : http://wassner.blogspot.fr/2016/06/recuperer-des-profils-twitter-par.html
No public research have been done (until now) on this dataset. I made a private application which is described here : http://wassner.blogspot.fr/2016/09/twitter-profiling.html (in French) which uses the full dataset (Millions of full profiles).
On can analyse a lot of stuff with this datasets :
Feel free to ask any question (or help request) via Twitter : @hwassner
Enjoy! ;)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is almost 15,000 accounts on Twitter. Accounts were collected from a 1% sampled stream over a 24-hour period, from 2022-07-02T04:18:23.000Z to 2022-07-03T04:18:23.000Z.
This data includes data from labeled data from https://doi.org/10.5281/zenodo.2653137, with an additional random sample of accounts from the stream to get to 15,000 accounts. Private profiles were removed.
This data was collected with the intention of using it for unsupervised machine learning. You are free to do what you want with proper citation.
The number of Twitter users in Brazil was forecast to continuously increase between 2024 and 2028 by in total 3.4 million users (+15.79 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 24.96 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Twitter dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset provides a comprehensive understanding of social media trends, empowering organizations to refine their communication and marketing strategies. Access the entire dataset or customize a subset to fit your needs. Popular use cases include market research to identify trending topics and hashtags, AI training by reviewing factors such as tweet content, retweets, and user interactions for predictive analytics, and trend forecasting by examining correlations between specific themes and user engagement to uncover emerging social media preferences.
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Cite as
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the key Twitter user statistics that you need to know.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the breakdown of Twitter users by age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.
Twitter_2010 data set contains tweets containing URLs that have been posted on Twitter during October 2010. In addition to tweets, we also the followee links of tweeting users, allowing us to reconstruct the follower graph of active (tweeting) users. URLs 66,059 tweets 2,859,764 users 736,930 links 36,743,448 Tweets. See also http://academictorrents.com/details/d8b3a315172c8d804528762f37fa67db14577cdb
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Twitter-HBS dataset consists of Twitter users, their tweets, and the label of their predominantly used language - Bosnian, Croatian, Montenegrin, or Serbian. Among the tweets, there are also tweets in other languages (mainly English) as the label encodes the predominantly used language of a user only. The main intended usage of this dataset is discrimination between closely-related languages on the level of a Twitter user (not a single tweet). The only pre-processing performed on the texts of the tweets is the transliteration from the Cyrillic into the Latin script so that the dataset measures the quality of the user classifications regardless of the script used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
One of the biggest advantages of Twitter is the speed at which information can be passed around. People use Twitter primarily to get news and for entertainment. This is the breakdown of why people use Twitter today.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present GeoCoV19, a large-scale Twitter dataset related to the ongoing COVID-19 pandemic. The dataset has been collected over a period of 90 days from February 1 to May 1, 2020 and consists of more than 524 million multilingual tweets. As the geolocation information is essential for many tasks such as disease tracking and surveillance, we employed a gazetteer-based approach to extract toponyms from user location and tweet content to derive their geolocation information using the Nominatim (Open Street Maps) data at different geolocation granularity levels. In terms of geographical coverage, the dataset spans over 218 countries and 47K cities in the world. The tweets in the dataset are from more than 43 million Twitter users, including around 209K verified accounts. These users posted tweets in 62 different languages.
Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed friends of friends\" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of
digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:N. Thakur, "Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets from 2017–2022 and 100 Research Questions", Journal of Analytics, Volume 1, Issue 2, 2022, pp. 72-97, DOI: https://doi.org/10.3390/analytics1020007AbstractThe exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 Tweets about exoskeletons that were posted in a 5-year period from 21 May 2017 to 21 May 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.
PHM2017 is a new dataset consisting of 7,192 English tweets across six diseases and conditions: Alzheimer’s Disease, heart attack (any severity), Parkinson’s disease, cancer (any type), Depression (any severity), and Stroke. The Twitter search API was used to retrieve the data using the colloquial disease names as search keywords, with the expectation of retrieving a high-recall, low precision dataset. After removing the re-tweets and replies, the tweets were manually annotated. The labels are:
self-mention. The tweet contains a health mention with a health self-report of the Twitter account owner, e.g., "However, I worked hard and ran for Tokyo Mayer Election Campaign in January through February, 2014, without publicizing the cancer." other-mention. The tweet contains a health mention of a health report about someone other than the account owner, e.g., "Designer with Parkinson’s couldn’t work then engineer invents bracelet + changes her world" awareness. The tweet contains the disease name, but does not mention a specific person, e.g., "A Month Before a Heart Attack, Your Body Will Warn You With These 8 Signals" non-health. The tweet contains the disease name, but the tweet topic is not about health. "Now I can have cancer on my wall for all to see <3"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.