Worldwide Social Media User in 2021 (Quarterly)
Facebook: https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/ Twitter: https://investor.twitterinc.com/home/default.aspx Instagram: https://investor.fb.com/home/default.aspx
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Introducing a comprehensive and meticulously curated dataset: "European Interest Groups' Social Media Engagement Dataset." This dataset offers a panoramic view of the digital footprint and social media presence of various interest groups within Europe. Encompassing a diverse range of platforms including Twitter, Facebook, Instagram, TikTok, and YouTube. This are the variables: 1. Name: The name of the organization 2. twitter_link: The link of twitter if it is 3. facebook_link: The link of facebook if it is 4. instagram_link: The link of instagram if it is 5. tiktok_link: The link of tiktok if it is 6. linkedin_link: The link of linkedin if it is 7. youtube_link: The link of youtube if it is With a focus on transparency and relevance, this dataset presents a wealth of information that delves into the strategies, content, and reach of interest groups across these dynamic online platforms. Researchers, policymakers, and analysts can explore trends, patterns, and correlations between online activities and real-world influence, shedding light on the evolving landscape of digital interaction within the realm of European interest groups.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social behavior has a fundamental impact on the dynamics of infectious diseases (such as COVID-19), challenging public health mitigation strategies and possibly the political consensus. The widespread use of the traditional and social media on the Internet provides us with an invaluable source of information on societal dynamics during pandemics. With this dataset, we aim to understand mechanisms of COVID-19 epidemic-related social behavior in Poland deploying methods of computational social science and digital epidemiology. We have collected and analyzed COVID-19 perception on the Polish language Internet during 15.01-31.07(06.08) and labeled data quantitatively (Twitter, Youtube, Articles) and qualitatively (Facebook, Articles and Comments of Article) in the Internet by infomediological approach.
-manually labelled 1000 most popular tweets (twits_annotated.xlsx) with cathegories is_fake (categorical and numeric) topic and sentiment;
-extracted 57,306 representative articles (articles_till_06_08.zip) in Polish using Eventregitry.org tool in language Polish and topic "Coronavirus" in article body;
extracted 1,015,199 (tweets_till_31_07_users.zip and tweets_till_31_07_text.zip) and Tweets from #Koronawirus in language Polish using Twitter API.
collected 1,574 videos (youtube_comments_till_31_07.zip and youtube_movie.csv) with keyword: Koronawirus on YouTube and 247,575 comments on them using Google API;
We supplemented the media observations with an analysis of 244 social empirical studies till 25.05 on COVID-19 in Poland (empirical_social_studies.csv).
Reports and analyzes and coding books can be found in Polish at: http://www.infodemia-koronawirusa.pl
Main report (in Polish) https://depot.ceon.pl/handle/123456789/19215
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Social Media Usage Dataset(Applications) features patterns and activity indicators that 1,000 users use seven major social media platforms, including Facebook, Instagram, and Twitter.
2) Data Utilization (1) Social Media Usage Dataset(Applications) has characteristics that: • This dataset provides different social media activity data for each user, including daily usage time, number of posts, number of likes received, and number of new followers. (2) Social Media Usage Dataset(Applications) can be used to: • Analysis of User Participation by Platform: You can analyze participation and popular trends by platform by comparing usage time and activity for each social media. • Establish marketing strategy: Based on user activity data, it can be used for targeted marketing, content production, and user retention strategies.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Social media and genre studies : an investigation of Facebook and Twitter higher education web pages. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is 30 days to social media success : the 30 day results guide to making the most of Twitter, blogging, LinkedIn, and Facebook. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is The rough guide to social media for beginners : getting started with Facebook, Twitter and Google+. It features 7 columns including author, publication date, language, and book publisher.
Full replication package for the paper.. Visit https://dataone.org/datasets/sha256%3Ab3d7aac1ffd3ecf0b3acdf85051e824b57004996214e962dea4f4b46ad275fa5 for complete metadata about this dataset.
As of April 2024, Facebook had an addressable ad audience reach 131.1 percent in Libya, followed by the United Arab Emirates with 120.5 percent and Mongolia with 116 percent. Additionally, the Philippines and Qatar had addressable ad audiences of 114.5 percent and 111.7 percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
Problem Statement
👉 Download the case studies here
A global consumer goods company struggled to understand customer sentiment across various social media platforms. With millions of posts, reviews, and comments generated daily, manually tracking and analyzing public opinion was inefficient. The company needed an automated solution to monitor brand perception, address negative feedback promptly, and leverage insights for marketing strategies.
Challenge
Analyzing social media sentiment posed the following challenges:
Processing vast amounts of unstructured text data from multiple platforms like Twitter, Facebook, and Instagram.
Accurately interpreting slang, emojis, and nuanced language used by social media users.
Identifying trends and actionable insights in real-time to respond to potential crises or opportunities effectively.
Solution Provided
An advanced sentiment analysis system was developed using Natural Language Processing (NLP) and sentiment analysis algorithms. The solution was designed to:
Classify social media posts into positive, negative, and neutral sentiments.
Extract key topics and trends related to the brand and its products.
Provide real-time dashboards for monitoring customer sentiment and identifying areas of improvement.
Development Steps
Data Collection
Aggregated data from major social media platforms using APIs, focusing on brand mentions, hashtags, and product keywords.
Preprocessing
Cleaned and normalized text data, including handling slang, emojis, and misspellings, to prepare it for analysis.
Model Training
Trained NLP models for sentiment classification using supervised learning. Implemented topic modeling algorithms to identify recurring themes and discussions.
Validation
Tested the sentiment analysis models on labeled datasets to ensure high accuracy and relevance in classifying social media posts.
Deployment
Integrated the sentiment analysis system with a real-time analytics dashboard, enabling the marketing and customer support teams to track trends and respond proactively.
Monitoring & Improvement
Established a continuous feedback mechanism to refine models based on evolving language patterns and new social media trends.
Results
Gained Actionable Insights
The system provided detailed insights into customer opinions, helping the company identify strengths and areas for improvement.
Improved Brand Reputation Management
Real-time monitoring enabled swift responses to negative feedback, mitigating potential reputation risks.
Informed Marketing Strategies
Insights from sentiment analysis guided targeted marketing campaigns, resulting in higher engagement and ROI.
Enhanced Customer Relationships
Proactive engagement with customers based on sentiment analysis improved customer satisfaction and loyalty.
Scalable Monitoring Solution
The system scaled efficiently to analyze data across multiple languages and platforms, broadening the company’s reach and understanding.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Social data visualization with HTML5 and JavaScript : leverage the power of HTML5 and JavaScript to build compelling visualizations of social data from Twitter, Facebook, and more. It features 7 columns including author, publication date, language, and book publisher.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About Dataset This dataset captures the pulse of viral social media trends across Facebook, Instagram and Twitter. It provides insights into the most popular hashtags, content types, and user engagement levels, offering a comprehensive view of how trends unfold across platforms. With regional data and influencer-driven content, this dataset is perfect for:
Trend analysis 🔍 Sentiment modeling 💭 Understanding influencer marketing 📈 Dive in to explore what makes content go viral, the behaviors that drive engagement, and how trends evolve on a global scale! 🌍
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Social Media Synthetic Dataset
Description
Topic: Social Media Posts and Interactions Domains: Social Media Platforms (Twitter, Facebook, Instagram) Focus: Synthetic collection of social media content and interactions Number of Entries: 500 Dataset Type: Raw Dataset Model Used: anthropic/claude-3-5-sonnet-20241022 Language: English Generated by: SynthGenAI Package
Additional Information
The dataset contains synthesized social media posts mimicking real… See the full description on the dataset page: https://huggingface.co/datasets/Shekswess/social-media-instruction.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about companies in Wiesbaden. It has 264 rows. It features 3 columns: tweets, and Facebook link.
The number of Twitter users in Indonesia was forecast to continuously increase between 2024 and 2028 by in total 1.4 million users (+6.14 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 24.25 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Malaysia and Singapore.
Worldwide Social Media User in 2021 (Quarterly)
Facebook: https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/ Twitter: https://investor.twitterinc.com/home/default.aspx Instagram: https://investor.fb.com/home/default.aspx