Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Objective(s): Momentum for open access to research is growing. Funding agencies and publishers are increasingly requiring researchers make their data and research outputs open and publicly available. However, clinical researchers struggle to find real-world examples of Open Data sharing. The aim of this 1 hr virtual workshop is to provide real-world examples of Open Data sharing for both qualitative and quantitative data. Specifically, participants will learn: 1. Primary challenges and successes when sharing quantitative and qualitative clinical research data. 2. Platforms available for open data sharing. 3. Ways to troubleshoot data sharing and publish from open data. Workshop Agenda: 1. “Data sharing during the COVID-19 pandemic” - Speaker: Srinivas Murthy, Clinical Associate Professor, Department of Pediatrics, Faculty of Medicine, University of British Columbia. Investigator, BC Children's Hospital 2. “Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project.” - Speaker: Maggie Woo Kinshella, Global Health Research Coordinator, Department of Obstetrics and Gynaecology, BC Children’s and Women’s Hospital and University of British Columbia This workshop draws on work supported by the Digital Research Alliance of Canada. Data Description: Presentation slides, Workshop Video, and Workshop Communication Srinivas Murthy: Data sharing during the COVID-19 pandemic presentation and accompanying PowerPoint slides. Maggie Woo Kinshella: Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project presentation and accompanying Powerpoint slides. This workshop was developed as part of Dr. Ansermino's Data Champions Pilot Project supported by the Digital Research Alliance of Canada. NOTE for restricted files: If you are not yet a CoLab member, please complete our membership application survey to gain access to restricted files within 2 business days. Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator on this page under "collaborate with the pediatric sepsis colab."
In 2022, online surveys were by far the most used traditional quantitative methodologies in the market research industry worldwide. During the survey, 85 percent of respondents stated that they regularly used online surveys as one of their three most used methods. Moreover, nine percent of respondents stated that they used online surveys only occasionally.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objectives: In quantitative research, understanding basic parameters of the study population is key for interpretation of the results. As a result, it is typical for the first table ("Table 1") of a research paper to include summary statistics for the study data. Our objectives are 2-fold. First, we seek to provide a simple, reproducible method for providing summary statistics for research papers in the Python programming language. Second, we seek to use the package to improve the quality of summary statistics reported in research papers.
Materials and Methods: The tableone package is developed following good practice guidelines for scientific computing and all code is made available under a permissive MIT License. A testing framework runs on a continuous integration server, helping to maintain code stability. Issues are tracked openly and public contributions are encouraged.
Results: The tableone software package automatically compiles summary statistics into publishable formats such as CSV, HTML, and LaTeX. An executable Jupyter Notebook demonstrates application of the package to a subset of data from the MIMIC-III database. Tests such as Tukey's rule for outlier detection and Hartigan's Dip Test for modality are computed to highlight potential issues in summarizing the data.
Discussion and Conclusion: We present open source software for researchers to facilitate carrying out reproducible studies in Python, an increasingly popular language in scientific research. The toolkit is intended to mature over time with community feedback and input. Development of a common tool for summarizing data may help to promote good practice when used as a supplement to existing guidelines and recommendations. We encourage use of tableone alongside other methods of descriptive statistics and, in particular, visualization to ensure appropriate data handling. We also suggest seeking guidance from a statistician when using tableone for a research study, especially prior to submitting the study for publication.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.
The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.
Methodology
To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).
These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.
To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.
Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.
Description of the data in this data set
Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies
The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information
Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}
Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?
Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))
HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)
Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx
Licenses or restrictions CC-BY
For more info, see README.txt
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 2.07(USD Billion) |
MARKET SIZE 2024 | 2.17(USD Billion) |
MARKET SIZE 2032 | 3.2(USD Billion) |
SEGMENTS COVERED | Deployment Type ,Organization Size ,Industry Vertical ,Data Type ,Analysis Type ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Cloud Deployment Machine Learning Integration Big Data Analytics Predictive Analytics Prescriptive Analytics |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | KNIME ,DAX Analytics ,Minitab ,Alteryx ,MVSP ,XLSTAT ,RapidMiner ,Statistica ,IBM ,TIBCO Software ,SPSS ,SAS Institute ,Oracle ,JMP |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Healthcare analytics Financial risk assessment Customer segmentation Fraud detection Anomaly detection |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 4.99% (2025 - 2032) |
This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.
The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.
This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.
Objectives of the study included:
1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level;
2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
3) Providing information on pricing and user fee policies and assessing the types of service actually provided;
4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit;
5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance;
6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.
The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.
The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.
Sample survey data [ssd]
The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.
The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.
Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.
The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.
Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.
The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.
For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.
In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.
Face-to-face [f2f]
The following survey instruments are available:
The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.
At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.
The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.
At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.
Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.
Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.
STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems" conducted by Martin Lnenicka (University of Hradec Králové, Czech Republic), Anastasija Nikiforova (University of Tartu, Estonia), Mariusz Luterek (University of Warsaw, Warsaw, Poland), Petar Milic (University of Pristina - Kosovska Mitrovica, Serbia), Daniel Rudmark (Swedish National Road and Transport Research Institute, Sweden), Sebastian Neumaier (St. Pölten University of Applied Sciences, Austria), Karlo Kević (University of Zagreb, Croatia), Anneke Zuiderwijk (Delft University of Technology, Delft, the Netherlands), Manuel Pedro Rodríguez Bolívar (University of Granada, Granada, Spain).
As there is a lack of understanding of the elements that constitute different types of value-adding public data ecosystems and how these elements form and shape the development of these ecosystems over time, which can lead to misguided efforts to develop future public data ecosystems, the aim of the study is: (1) to explore how public data ecosystems have developed over time and (2) to identify the value-adding elements and formative characteristics of public data ecosystems. Using an exploratory retrospective analysis and a deductive approach, we systematically review 148 studies published between 1994 and 2023. Based on the results, this study presents a typology of public data ecosystems and develops a conceptual model of elements and formative characteristics that contribute most to value-adding public data ecosystems, and develops a conceptual model of the evolutionary generation of public data ecosystems represented by six generations called Evolutionary Model of Public Data Ecosystems (EMPDE). Finally, three avenues for a future research agenda are proposed.
This dataset is being made public both to act as supplementary data for "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems ", Telematics and Informatics*, and its Systematic Literature Review component that informs the study.
Description of the data in this data set
PublicDataEcosystem_SLR provides the structure of the protocol
Spreadsheet#1 provides the list of results after the search over three indexing databases and filtering out irrelevant studies
Spreadsheets #2 provides the protocol structure.
Spreadsheets #3 provides the filled protocol for relevant studies.
The information on each selected study was collected in four categories:(1) descriptive information,(2) approach- and research design- related information,(3) quality-related information,(4) HVD determination-related information
Descriptive Information
Article number
A study number, corresponding to the study number assigned in an Excel worksheet
Complete reference
The complete source information to refer to the study (in APA style), including the author(s) of the study, the year in which it was published, the study's title and other source information.
Year of publication
The year in which the study was published.
Journal article / conference paper / book chapter
The type of the paper, i.e., journal article, conference paper, or book chapter.
Journal / conference / book
Journal article, conference, where the paper is published.
DOI / Website
A link to the website where the study can be found.
Number of words
A number of words of the study.
Number of citations in Scopus and WoS
The number of citations of the paper in Scopus and WoS digital libraries.
Availability in Open Access
Availability of a study in the Open Access or Free / Full Access.
Keywords
Keywords of the paper as indicated by the authors (in the paper).
Relevance for our study (high / medium / low)
What is the relevance level of the paper for our study
Approach- and research design-related information
Approach- and research design-related information
Objective / Aim / Goal / Purpose & Research Questions
The research objective and established RQs.
Research method (including unit of analysis)
The methods used to collect data in the study, including the unit of analysis that refers to the country, organisation, or other specific unit that has been analysed such as the number of use-cases or policy documents, number and scope of the SLR etc.
Study’s contributions
The study’s contribution as defined by the authors
Qualitative / quantitative / mixed method
Whether the study uses a qualitative, quantitative, or mixed methods approach?
Availability of the underlying research data
Whether the paper has a reference to the public availability of the underlying research data e.g., transcriptions of interviews, collected data etc., or explains why these data are not openly shared?
Period under investigation
Period (or moment) in which the study was conducted (e.g., January 2021-March 2022)
Use of theory / theoretical concepts / approaches? If yes, specify them
Does the study mention any theory / theoretical concepts / approaches? If yes, what theory / concepts / approaches? If any theory is mentioned, how is theory used in the study? (e.g., mentioned to explain a certain phenomenon, used as a framework for analysis, tested theory, theory mentioned in the future research section).
Quality-related information
Quality concerns
Whether there are any quality concerns (e.g., limited information about the research methods used)?
Public Data Ecosystem-related information
Public data ecosystem definition
How is the public data ecosystem defined in the paper and any other equivalent term, mostly infrastructure. If an alternative term is used, how is the public data ecosystem called in the paper?
Public data ecosystem evolution / development
Does the paper define the evolution of the public data ecosystem? If yes, how is it defined and what factors affect it?
What constitutes a public data ecosystem?
What constitutes a public data ecosystem (components & relationships) - their "FORM / OUTPUT" presented in the paper (general description with more detailed answers to further additional questions).
Components and relationships
What components does the public data ecosystem consist of and what are the relationships between these components? Alternative names for components - element, construct, concept, item, helix, dimension etc. (detailed description).
Stakeholders
What stakeholders (e.g., governments, citizens, businesses, Non-Governmental Organisations (NGOs) etc.) does the public data ecosystem involve?
Actors and their roles
What actors does the public data ecosystem involve? What are their roles?
Data (data types, data dynamism, data categories etc.)
What data do the public data ecosystem cover (is intended / designed for)? Refer to all data-related aspects, including but not limited to data types, data dynamism (static data, dynamic, real-time data, stream), prevailing data categories / domains / topics etc.
Processes / activities / dimensions, data lifecycle phases
What processes, activities, dimensions and data lifecycle phases (e.g., locate, acquire, download, reuse, transform, etc.) does the public data ecosystem involve or refer to?
Level (if relevant)
What is the level of the public data ecosystem covered in the paper? (e.g., city, municipal, regional, national (=country), supranational, international).
Other elements or relationships (if any)
What other elements or relationships does the public data ecosystem consist of?
Additional comments
Additional comments (e.g., what other topics affected the public data ecosystems and their elements, what is expected to affect the public data ecosystems in the future, what were important topics by which the period was characterised etc.).
New papers
Does the study refer to any other potentially relevant papers?
Additional references to potentially relevant papers that were found in the analysed paper (snowballing).
Format of the file.xls, .csv (for the first spreadsheet only), .docx
Licenses or restrictionsCC-BY
For more info, see README.txt
In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate...
These interview data are part of the project "Looking for data: information seeking behaviour of survey data users", a study of secondary data users’ information-seeking behaviour. The overall goal of this study was to create evidence of actual information practices of users of one particular retrieval system for social science data in order to inform the development of research data infrastructures that facilitate data sharing. In the project, data were collected based on a mixed methods design. The research design included a qualitative study in the form of expert interviews and – building on the results found therein – a quantitative web survey of secondary survey data users. For the qualitative study, expert interviews with six reference persons of a large social science data archive have been conducted. They were interviewed in their role as intermediaries who provide guidance for secondary users of survey data. The knowledge from their reference work was expected to provide a condensed view of goals, practices, and problems of people who are looking for survey data. The anonymized transcripts of these interviews are provided here. They can be reviewed or reused upon request. The survey dataset from the quantitative study of secondary survey data users is downloadable through this data archive after registration. The core result of the Looking for data study is that community involvement plays a pivotal role in survey data seeking. The analyses show that survey data communities are an important determinant in survey data users' information seeking behaviour and that community involvement facilitates data seeking and has the capacity of reducing problems or barriers. The qualitative part of the study was designed and conducted using constructivist grounded theory methodology as introduced by Kathy Charmaz (2014). In line with grounded theory methodology, the interviews did not follow a fixed set of questions, but were conducted based on a guide that included areas of exploration with tentative questions. This interview guide can be obtained together with the transcript. For the Looking for data project, the data were coded and scrutinized by constant comparison, as proposed by grounded theory methodology. This analysis resulted in core categories that make up the "theory of problem-solving by community involvement". This theory was exemplified in the quantitative part of the study. For this exemplification, the following hypotheses were drawn from the qualitative study: (1) The data seeking hypotheses: (1a) When looking for data, information seeking through personal contact is used more often than impersonal ways of information seeking. (1b) Ways of information seeking (personal or impersonal) differ with experience. (2) The experience hypotheses: (2a) Experience is positively correlated with having ambitious goals. (2b) Experience is positively correlated with having more advanced requirements for data. (2c) Experience is positively correlated with having more specific problems with data. (3) The community involvement hypothesis: Experience is positively correlated with community involvement. (4) The problem solving hypothesis: Community involvement is positively correlated with problem solving strategies that require personal interactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this paper is to investigate the re-use of research data deposited in digital data archive in the social sciences. The study examines the quantity, type, and purpose of data downloads by analyzing enriched user log data collected from Swiss data archive. The findings show that quantitative datasets are downloaded increasingly from the digital archive and that downloads focus heavily on a small share of the datasets. The most frequently downloaded datasets are survey datasets collected by research organizations offering possibilities for longitudinal studies. Users typically download only one dataset, but a group of heavy downloaders form a remarkable share of all downloads. The main user group downloading data from the archive are students who use the data in their studies. Furthermore, datasets downloaded for research purposes often, but not always, serve to be used in scholarly publications. Enriched log data from data archives offer an interesting macro level perspective on the use and users of the services and help understanding the increasing role of repositories in the social sciences. The study provides insights into the potential of collecting and using log data for studying and evaluating data archive use.
The FDA Device Dataset by Dataplex provides comprehensive access to over 24 million rows of detailed information, covering 9 key data types essential for anyone involved in the medical device industry. Sourced directly from the U.S. Food and Drug Administration (FDA), this dataset is a critical resource for regulatory compliance, market analysis, and product safety assessment regarding.
Dataset Overview:
This dataset includes data on medical device registrations, approvals, recalls, and adverse events, among other crucial aspects. The dataset is meticulously cleaned and structured to ensure that it meets the needs of researchers, regulatory professionals, and market analysts.
24 Million Rows of Data:
With over 24 million rows, this dataset offers an extensive view of the regulatory landscape for medical devices. It includes data types such as classification, event, enforcement, 510k, registration listings, recall, PMA, UDI, and covid19 serology. This wide range of data types allows users to perform granular analysis on a broad spectrum of device-related topics.
Sourced from the FDA:
All data in this dataset is sourced directly from the FDA, ensuring that it is accurate, up-to-date, and reliable. Regular updates ensure that the dataset remains current, reflecting the latest in device approvals, clearances, and safety reports.
Key Features:
Comprehensive Coverage: Includes 9 key device data types, such as 510(k) clearances, premarket approvals, device classifications, and adverse event reports.
Regulatory Compliance: Provides detailed information necessary for tracking compliance with FDA regulations, including device recalls and enforcement actions.
Market Analysis: Analysts can utilize the dataset to assess market trends, monitor competitor activities, and track the introduction of new devices.
Product Safety Analysis: Researchers can analyze adverse event reports and device recalls to evaluate the safety and performance of medical devices.
Use Cases: - Regulatory Compliance: Ensure your devices meet FDA standards, monitor compliance trends, and stay informed about regulatory changes.
Market Research: Identify trends in the medical device market, track new device approvals, and analyze competitive landscapes with up-to-date and historical data.
Product Safety: Assess the safety and performance of medical devices by examining detailed adverse event reports and recall data.
Data Quality and Reliability:
The FDA Device Dataset prioritizes data quality and reliability. Each record is meticulously sourced from the FDA's official databases, ensuring that the information is both accurate and up-to-date. This makes the dataset a trusted resource for critical applications, where data accuracy is vital.
Integration and Usability:
The dataset is provided in CSV format, making it compatible with most data analysis tools and platforms. Users can easily import, analyze, and utilize the data for various applications, from regulatory reporting to market analysis.
User-Friendly Structure and Metadata:
The data is organized for easy navigation, with clear metadata files included to help users identify relevant records. The dataset is structured by device type, approval and clearance processes, and adverse event reports, allowing for efficient data retrieval and analysis.
Ideal For:
Regulatory Professionals: Monitor FDA compliance, track regulatory changes, and prepare for audits with comprehensive and up-to-date product data.
Market Analysts: Conduct detailed research on market trends, assess new device entries, and analyze competitive dynamics with extensive FDA data.
Healthcare Researchers: Evaluate the safety and efficacy of medical devices product data, identify potential risks, and contribute to improved patient outcomes through detailed analysis.
This dataset is an indispensable resource for anyone involved in the medical device industry, providing the data and insights necessary to drive informed decisions and ensure compliance with FDA regulations.
https://www.icpsr.umich.edu/web/ICPSR/studies/1218/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1218/terms
In this article, the authors address a well-known but infrequently discussed problem in the quantitative study of international conflict: despite immense data collections, prestigious journals, and sophisticated analyses, empirical findings in the literature on international conflict are often unsatisfying. Many statistical results change from article to article and specification to specification. Accurate forecasts are nonexistent. The authors offer a conjecture about one source of this problem: the causes of conflict, theorized to be important but often found to be small or ephemeral in prior research, are indeed tiny for the vast majority of dyads, but they are large, stable, and replicable wherever the ex ante probability of conflict is large. The authors provide a direct test of their conjecture by formulating a statistical model that includes its critical features. The approach, a version of a "neural network" model, uncovers some structural features of international conflict and also functions as an evaluative measure by forecasting. Moreover, it is easy to evaluate whether the neural network model is a statistical improvement over the simpler models commonly used.
Abstract copyright UK Data Service and data collection copyright owner.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data from original survey conducted in 2007-2008 in China; including the bi-lingual survey instrument.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The subcellular localization of objects, such as organelles, proteins, or other molecules, instructs cellular form and function. Understanding the underlying spatial relationships between objects through colocalization analysis of microscopy images is a fundamental approach used to inform biological mechanisms. We generated an automated and customizable computational tool, the SubcellularDistribution pipeline, to facilitate object-based image analysis from 3D fluorescence microcopy images. To test the utility of the SubcellularDistribution pipeline, we examined the subcellular distribution of mRNA relative to centrosomes within Drosophila embryos. Centrosomes are microtubule-organizing centers, and RNA enrichments at centrosomes are of emerging importance. Our open-source and freely available software detected RNA distributions comparably to commercially available image analysis software. The SubcellularDistribution pipeline is designed to guide the user through the complete process of preparing image analysis data for publication, from image segmentation and data processing to visualization.
Methods Images were acquired on a Nikon Ti-E system fitted with a Yokogawa CSU-X1 spinning disk head, Hamamatsu Orca Flash 4.0 v2 digital CMOS camera, Perfect Focus system, and a Nikon LU-N4 solid state laser launch (15 mW 405, 488, 561, and 647 nm) using a 100x 1.49 NA Apo TIRF oil-immersion objective. This microscope was controlled through Nikon Elements AR software on a 64-bit HP Z440 workstation.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 0.06(USD Billion) |
MARKET SIZE 2024 | 0.08(USD Billion) |
MARKET SIZE 2032 | 0.34(USD Billion) |
SEGMENTS COVERED | Modality ,Animal Type ,Application ,Automated Features ,Output Type ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Rising pet ownership Technological advancements Increasing focus on animal welfare Growing demand for remote monitoring Veterinary industry expansion |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | eScription ,OptiTrack ,VICON ,BTS Bioengineering ,Genovation ,ZEBRIS ,Xsens ,SMART ,Gait Up ,Qualisys ,Motion Analysis Corporation ,Noraxon ,IMV imaging ,Phoenix Controls ,VASG |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Veterinary diagnostics Precision animal farming Animal health monitoring Livestock management Disease prevention |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 20.53% (2025 - 2032) |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are data from 48 selected peer-reviewed articles and 13 other grey literature regarding effectiveness of radon mitigation systems installed in residential or model houses. Some of the documents described also the factors that need to be considered in installing the mitigation systems.
The screened and critically appraised data were synthesized data using PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) 2009 checklist. We assessed quality by using Cochrane Risk of Bias Tool for the experimental and Hamilton tool for the non-experimental and uncontrolled studies. We included 61 pieces of literature for the final review. 13 were various types of documents, and 48 were peer-reviewed articles. Among the latter, seventeen were experimental studies, three reviews, 22 quantitative, one case-control study, four case studies, one qualitative research. Among the experimental studies, fifteen were of high quality and two of moderate quality. Among 22 non-experimental quantitative studies, 15 were of high quality and 7 of moderate quality; all the case and qualitative studies were of high quality.
The two primary goals of this workshop are: (1) to present an example of working with data that uses one of the files available through the Data Liberation Initiative (DLI); and (2) to provide a hands-on computing exercise that introduces some basic approaches to quantitative analysis. The study chosen for this example is the National Survey of Literacy Skills Used in Daily Activities conducted in 1989. In completing this example, three general strategies for performing quantitative analysis will be discussed.
Data to replicate analysis of identification strategies in political science literature on civil conflict since 2000.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Objective(s): Momentum for open access to research is growing. Funding agencies and publishers are increasingly requiring researchers make their data and research outputs open and publicly available. However, clinical researchers struggle to find real-world examples of Open Data sharing. The aim of this 1 hr virtual workshop is to provide real-world examples of Open Data sharing for both qualitative and quantitative data. Specifically, participants will learn: 1. Primary challenges and successes when sharing quantitative and qualitative clinical research data. 2. Platforms available for open data sharing. 3. Ways to troubleshoot data sharing and publish from open data. Workshop Agenda: 1. “Data sharing during the COVID-19 pandemic” - Speaker: Srinivas Murthy, Clinical Associate Professor, Department of Pediatrics, Faculty of Medicine, University of British Columbia. Investigator, BC Children's Hospital 2. “Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project.” - Speaker: Maggie Woo Kinshella, Global Health Research Coordinator, Department of Obstetrics and Gynaecology, BC Children’s and Women’s Hospital and University of British Columbia This workshop draws on work supported by the Digital Research Alliance of Canada. Data Description: Presentation slides, Workshop Video, and Workshop Communication Srinivas Murthy: Data sharing during the COVID-19 pandemic presentation and accompanying PowerPoint slides. Maggie Woo Kinshella: Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project presentation and accompanying Powerpoint slides. This workshop was developed as part of Dr. Ansermino's Data Champions Pilot Project supported by the Digital Research Alliance of Canada. NOTE for restricted files: If you are not yet a CoLab member, please complete our membership application survey to gain access to restricted files within 2 business days. Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator on this page under "collaborate with the pediatric sepsis colab."