Spatial coverage index compiled by East View Geospatial of set "Germany 1:750,000 Scale Thematic Maps". Source data from BKG (publisher). Type: Thematic - Political and Administrative. Scale: 1:750,000. Region: Europe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.
Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.
Soil data confidence is described using a 4 class system between high and very low as outlined below.:
Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.
Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.
Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.
Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The documents included in this dataset provide information on:a) personal questions given to survey participants (DemographicsQuestionnaire.pdf)b) spatial questions given to participants (SpatialQuestions.pdf)c) the adapted SUS questionnaire (MapUsabilityScale.pdf)d) The dataset of collected participants responses, in the form of a zip archive (3D_printed_map.7z). e) a document with brief guidelines for conducting the survey (Guidelines.docx).f) Finally, the R script (experiment.R) to run the statistical analysis detailed in the paper and to generate Tables 1-4 and the contents of Figure 9 are also included. The R script needs calling the above-mentioned dataset of participants' responses (d), to run effectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
simple_land_cover1.tif
- an example land cover dataset presented in Figures 1 and 2- simple_landform1.tif
- an example landform dataset presented in Figures 1 and 2- landcover_europe.tif
- a land cover dataset with nine categories for Europe - landcover_europe.qml
- a QGIS color style for the landcover_europe.tif
dataset- landform_europe.tif
- a landform dataset with 17 categories for Europe - landform_europe.qml
- a QGIS color style for the landform_europe.tif
dataset- map1.gpkg
- a map of LTs in Europe constructed using the INCOMA-based method- map1.qml
- a QGIS color style for the map1.gpkg
dataset- map2.gpkg
- a map of LTs in Europe constructed using the COMA method to identify and delineate pattern types in each theme separately- map2.qml
- a QGIS color style for the map2.gpkg
dataset- map3.gpkg
- a map of LTs in Europe constructed using the map overlay method- map3.qml
- a QGIS color style for the map3.gpkg
datasetA thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. Thematic maps include: Population Age Income Language of work Instruction in the official minority language
This hands on GIS exercise discusses the creation of thematic maps with ArcView.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database 2002-2005: Project Size = 1,898 acres Fort Larned National Historic Site (including the Rut Site) = 705 acres 16 Map Classes 11 Vegetated 5 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at FOLS to ¼ acre. Total Size = 229 Polygons Average Polygon Size = 8.3 acres Overall Thematic Accuracy = 92% To produce the digital map, a combination of 1:8,500-scale (0.75 meter pixels) color infrared digital ortho-imagery acquired on October 26, 2005 by the Kansas Applied Remote Sensing Program and 1:12,000-scale true color ortho-rectified imagery acquired in 2005 by the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office, and all of the GPS referenced ground data were used to interpret the complex patterns of vegetation and land-use. In the end, 16 map units (11 vegetated and 5 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed and revised. One hundred and six accuracy assessment (AA) data points were collected in 2006 by KNSHI and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 92%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Catalogue of the thematic maps of Arctic, available from Russian and European sources: Atlases and separate maps
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maps are often animated to help users make comparisons and comprehend trends. However, large and complex differences between sequential maps can inhibit users from doing so. This paper proposes a morphing technique to highlight trends without manual intervention. Changes between sequential maps are considered as the diffusion processes of expanding classes, with these processes simulated by cellular automata. A skeleton extraction technique is introduced to handle special cases. Experimental results demonstrate that the proposed morphing technique can reveal obvious trends between dramatically changed maps. The potential application of the proposed morphing technique in sequential spatial data (e.g. remote-sensing images) is discussed.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global map drawing services market size was valued at approximately $1.2 billion in 2023 and is projected to reach $2.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.1% during the forecast period. This growth can be attributed to the increasing demand for precise and customized mapping solutions across various industries such as urban planning, environmental management, and tourism.
One of the primary growth factors of the map drawing services market is the rapid advancement in Geographic Information Systems (GIS) technology. The integration of advanced GIS tools allows for the creation of highly accurate and detailed maps, which are essential for urban planning and environmental management. Additionally, the growing emphasis on smart city initiatives worldwide has led to an increased need for customized mapping solutions to manage urban development and infrastructure efficiently. These technological advancements are not only improving the quality of map drawing services but are also making them more accessible to a broader range of end-users.
Another significant growth factor is the rising awareness and adoption of map drawing services in the tourism sector. Customized maps are increasingly being used to enhance the tourist experience by providing detailed information about destinations, routes, and points of interest. This trend is particularly prominent in regions with rich cultural and historical heritage, where detailed thematic maps can offer tourists a more immersive and informative experience. Furthermore, the digitalization of the tourism industry has made it easier to integrate these maps into various applications, further driving the demand for map drawing services.
Environmental management is another key area driving the growth of the map drawing services market. With the increasing focus on sustainable development and environmental conservation, there is a growing need for accurate maps to monitor natural resources, track changes in land use, and plan conservation efforts. Map drawing services provide essential tools for environmental scientists and policymakers to analyze and visualize data, aiding in better decision-making and management of natural resources. The rising environmental concerns globally are expected to continue driving the demand for these services.
From a regional perspective, North America is anticipated to hold a significant share of the map drawing services market due to the high adoption rate of advanced mapping technologies and the presence of major market players in the region. Furthermore, the region's focus on smart city projects and environmental conservation initiatives is expected to fuel the demand for map drawing services. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate, driven by rapid urbanization, industrialization, and the growing need for efficient infrastructure planning and management.
The map drawing services market is segmented into several service types, including custom map drawing, thematic map drawing, topographic map drawing, and others. Custom map drawing services cater to specific client needs, offering tailored mapping solutions for various applications. This segment is expected to witness significant growth due to the increasing demand for personalized maps in sectors such as urban planning, tourism, and corporate services. Businesses and government agencies are increasingly relying on custom maps to support their operations, leading to the expansion of this segment.
Thematic map drawing services focus on creating maps that highlight specific themes or topics, such as population density, climate patterns, or economic activities. These maps are particularly useful for educational purposes, research, and community planning. The growing emphasis on data-driven decision-making and the need for visual representation of complex datasets are driving the demand for thematic maps. Additionally, thematic maps play a crucial role in public health, disaster management, and policy formulation, contributing to the segment's growth.
Topographic map drawing services offer detailed representations of physical features of a landscape, including elevation, terrain, and landforms. These maps are essential for various applications, such as environmental management, military ope
https://www.skyquestt.com/privacy/https://www.skyquestt.com/privacy/
Digital Map Market size was valued at USD 25.9 Billion in 2023 and is poised to grow from USD 28.75 Billion in 2024 to USD 66.16 Billion by 2032, growing at a CAGR of 11% during the forecast period (2025-2032).
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Digital Maps Market Size And Forecast
Digital Maps Market size was valued at USD 25.95 Billion in 2024 and is projected to reach USD 100.9 Billion by 2031, growing at a CAGR of 18.50% from 2024 to 2031.
Global Digital Maps Market Drivers
Increasing smartphone penetration: The growing number of smartphone users and the widespread availability of internet connectivity have made digital maps easily accessible. Advancements in mapping technology: The development of more accurate and detailed digital maps, incorporating real-time traffic updates and navigation features, has increased their appeal to users. Growth of the ride-sharing and delivery services industry: These industries rely heavily on accurate and up-to-date digital maps for navigation and route optimization.
Global Digital Maps Market Restraints
Data privacy concerns: The collection and use of location data raise privacy concerns, which can hinder the adoption of digital maps. Map inaccuracies: Despite advancements in mapping technology, inaccuracies and errors can still occur, leading to user dissatisfaction. Competition from free mapping services: The availability of free mapping services from tech giants like Google and Apple can limit the market for premium digital mapping solutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map draws attention to your thematic content by providing a neutral background with minimal colors, labels, and features. Only key information is represented to provide geographic context, allowing your data to come to the foreground. This light gray map supports any strong colors, creating a visually compelling map graphic which helps your reader see the patterns intended. This map was developed by Esri using HERE data, DeLorme basemap layers, OpenStreetMap contributors, Esri basemap data, and select data from the GIS user community. Worldwide coverage is provided from Level 0 (1:591M scale) through Level 13 (1:72k scale). In North America (Canada, Mexico, United States), Europe, India, South America and Central America, Africa, most of the Middle east, and Australia & New Zealand coverage is provided from Level 14 (1:36k scale) through Level 16 (1:9k scale). For more information on this map, including the terms of use, visit us online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ubiMap dataset is comprised of 3,530 map images collected from the Bing image search service (1,730 maps) and Geo-Journal (1,800 maps). Each image has been manually labeled with 22 types of map elements, including their boundary shapes and category properties, resulting in an average of 5.92 elements per map. ubiMap-l is built uopon ubiMap by removing maps that contained only one element, which results a total of 3,515 maps for map layout retrieval test. We first opensourced 703 maps in ubiMap-l that we used for testing our map layout representation learning framework, MapLayNet. Besides 703 map images and their layout label data, embedding of MapLayNet and its baseline model is provided along with the python codes for embedding visualizaiton. The dataset will be open access in late 2025.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
In 1990/91, nationwide aerial photography flights were carried out using a color infrared (CIR) film that is particularly suitable for analysis purposes on a scale of 1:10.000. As a result of the visual image processing process, thematic maps were created on the basis of the intersection of the topographic map 1:10.000, in which the encoded information is attached to each area- and line-like biotope type according to the alpha-numeric key of the biotope types and usage types. The biotope and usage type key consists of letter and number coding. It has a three-stage hierarchical structure within the biotope groups. Based on 6 landscape element types (biotope groups), these were broken down into a total of 23 structural types (subunits), which in turn comprise several biotope types (subunits). Each biotope type can have features from two further columns (vegetational characteristic; Location and usage characteristics) which are to be assigned freely as letter encodings.
MIT light grey basemap used for thematic mapping.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
A thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. Thematic maps include: Population Age Income Language of work Instruction in the official minority language
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This layer represents Land use polygons as determined by a combination of analytic techniques, mostly using Landsat 5 image mosaics . BTM 1 was done on a federal satellite image base that was only accurate to about 250m. The images were geo-corrected, not ortho-corrected, so there is distortion in areas of high relief. This is not a multipart feature
Spatial coverage index compiled by East View Geospatial of set "Germany 1:750,000 Scale Thematic Maps". Source data from BKG (publisher). Type: Thematic - Political and Administrative. Scale: 1:750,000. Region: Europe.