100+ datasets found
  1. n

    LANDISVIEW 2.0 : Free Spatial Data Analysis

    • cmr.earthdata.nasa.gov
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS
    Explore at:
    Dataset updated
    Mar 5, 2021
    Time period covered
    Jan 1, 1970 - Present
    Description

    LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

  2. Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York (NPS, GRD, GRI, GATE, GATE digital map) adapted from a Rutgers University Institute of Marine and Coastal Sciences unpublished digital data by Psuty, N.P., McLoughlin, S.M., Schmelz, W. and Spahn, A. (2014) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-pre-hurricane-sandy-geomorphological-gis-map-of-the-gateway-national-r
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Jamaica Bay, Staten Island, New York, Sandy Hook
    Description

    **THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  3. d

    Addresses (Open Data)

    • catalog.data.gov
    • data-academy.tempe.gov
    • +11more
    Updated Nov 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Addresses (Open Data) [Dataset]. https://catalog.data.gov/dataset/addresses-open-data
    Explore at:
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    City of Tempe
    Description

    This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary

  4. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  5. u

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +4more
    bin
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  6. USA Soils Map Units

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +7more
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://hub.arcgis.com/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  7. A

    NREL GIS Data: Seasonal and diurnal data from Afghanistan surface weather...

    • data.amerigeoss.org
    • data.wu.ac.at
    zip
    Updated Jul 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). NREL GIS Data: Seasonal and diurnal data from Afghanistan surface weather stations [Dataset]. https://data.amerigeoss.org/de/dataset/nrel-gis-data-seasonal-and-diurnal-data-from-afghanistan-surface-weather-stations
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Afghanistan
    Description

    This dataset was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Agency for International Development's (USAID) South Asia Regional Initiative for Energy Cooperation (SARI/E). The dataset contains graphical files of seasonal and diurnal data from over 50 surface weather stations in .pdf format in Afghanistan. The data were output in Geographic Information Systems (GIS) format and incorporated into a Geospatial Toolkit (GsT). The GsT allows the user to examine the resource data in a geospatial context along with other key information relevant to renewable energy development, such as transportation networks, transmission corridors, existing power facilities, load centers, terrain conditions, and land use.

    License Info

    DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  8. Site Class - Forest Practices Regulation

    • data-wadnr.opendata.arcgis.com
    • geo.wa.gov
    • +2more
    Updated Feb 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Department of Natural Resources (2017). Site Class - Forest Practices Regulation [Dataset]. https://data-wadnr.opendata.arcgis.com/datasets/a1ec0f7f2aaa411a977a80b98c1bd174
    Explore at:
    Dataset updated
    Feb 10, 2017
    Dataset authored and provided by
    Washington State Department of Natural Resourceshttps://dnr.wa.gov/
    Area covered
    Description

    Click to downloadClick for metadataService URL: https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_Unstable_Slopes/MapServer/3The siteclass data layer was created for use in implementing Forest Practices' Riparian Management Rules. (See WAC 222-30-021 and 222-30-022.)

    The siteclass data layer was derived from the DNR soils data layer's site index codes and major tree species codes for western and eastern Washington soils contained in the layer's Soils-Main table and Soils-Pflg (private forest land grade) table. Site index ranges in the Soils_PFLG took precedence over site index ranges in the Soils-Main table where data existed.The siteclass data layer was created for use in implementing new ForestPractices' Riparian Management Rules. (See WAC 222-30-021 and 222-30-022.) The siteclass information was derived from the DNR soils data layer's site indexcodes and major tree species codes for western and eastern Washington soilscontained in the layer's Soils-Main table and Soils-Pflg (private forest landgrade) table. Site index ranges in the Soils_PFLG took precedence over siteindex ranges in the Soils-Main table where data existed.Siteclass codes as derived from the soil survey:For Western Washington, the 50 year site index is used SITECLASS SITE INDEX RANGE I 137+ II 119-136 III 97-118 IV 76-96 V 1-75For Eastern Washington, the 100 year site index is used SITECLASS SITE INDEX RANGE I 120+ II 101-120 III 81-100 IV 61-80 V 1-60In addition to the coding scheme above, the following codes were added forrule compliance: SITECLASS DESCRIPTION 6 (Red Alder) The soils major species code indicated Red Alder 7 (ND/GP) No data), NA, or gravel pit 8 (NC/MFP) Non-commercial or marginal commercial forest land 9 (WAT) Water body(Rule note: If the site index does not exist or indicates red alder,noncommercial, or marginally commercial species, the following apply:If the whole RMZ width is within those categories, use site class V.If those categories occupy only a portion of the RMZ width, then use thesite index for conifer in the adjacent soil polygon.)WADNR SOILS LAYER INFORMATION LAYER: SOILS GEN.SOURCE: State soils mapping program CODE DOCUMENT: State soil surveys CONTACT: NA COVER TYPE: Spatial polygon coverage DATA TYPE: Primary data Information for the SOILS data layer was derived from the Private Forest Land Grading system (PFLG) and subsequent soil surveys. PFLG was a five year mapping program completed in 1980 for the purpose of forest land taxation. It was funded by the Washington State Department of Revenue in cooperation with the Department of Natural Resources, Soil Conservation Service (SCS), USDA Forest Service and Washington State University. State and private lands which had the potential of supporting commercial forest stands were surveyed. Some Indian tribal and federal lands were surveyed. Because this was a cooperative soil survey project, agricultural and non- commercial forest lands were also included within some survey areas. After the Department of Natural Resources originally developed its geographic information system, digitized soils delineations and a few soil attributes were transferred to the system. Remaining PFLG soil attributes were added at a later time and are now available through associated lookup tables. SCS soils data on agricultural lands also have subsequently been added to this data layer. Approximately 1100 townships wholly or partially contain digitized soils data (2101 townships would provide complete coverage of the state of Washington). SOILS data are currently stored in the Polygon Attribute Table (.PAT) and INFO expansion files. COORDINATE SYSTEM: WA State Plane South Zone (5626) (N. zone converted to S. zone) COORDINATE UNITS: Feet HORIZONTAL DATUM: NAD27 PROJECTION NAME: Lambert Conformal Conic **** MAJOR CODES USED FOR SITECLASS DATA*****PFLG DATA: ITEM: PFLG.MAJ.SPEC TITLE: Potential major tree species for given soil FORMAT: INPUT OUTPUT DATA DECIMAL ARRAY ARRAY WIDTH WIDTH TYPE PLACES OCCUR. INDEX ------------------------------------------------- 3 3 C 0 0 0 CODE TABLE OR VALUE RANGE: SOIL.MAJ.SPEC.CODE DESCRIPTION: Potentially major tree species for a given soil type. The data carried by this item describes a major commercial tree species that could potentially grow on a specific soil type as identified in the Private Forest Land Grading program (PFLG). Non-tree codes are also included to map non-soil ground cover, e.g. water, gravel pits. ITEM: PFLG.SITE.INDEX TITLE: Mean site index calc.from trees on given soil FORMAT: INPUT OUTPUT DATA DECIMAL ARRAY ARRAY WIDTH WIDTH TYPE PLACES OCCUR. INDEX ------------------------------------------------- 3 3 I 0 0 0 CODE TABLE OR VALUE RANGE: 0-200 DESCRIPTION: Site index data collected for the Private Forest Land Grading soils program (PFLG). It is a designation of the quality of a forest site based on the height of of the tallest trees (dominant and co-dominant trees) in a stand at an arbitrarily chosen age. Usually the age chosen is 50 or 100 years. For example, if the average height attained by the tallest trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 feet. Westside site conditions are estimated by using an index age of 50 years, while eastside site conditions are estimated by using an index age of 100 years.--------------------------------------------------------------------SOILS-MAIN DATA: CODE TABLE NAME: SOIL.MAJ.SPEC.CODE ----------------------------------------------------------------------------- CODE MAP/REPORT MAP CODE DESCRIPTION LABEL SYMB --------- ------------ ---- -------------------------------------------------- AF ALPINE FIR 0 Subalpine fir DF DOUGLAS FIR 0 Douglas fir GF GRAND FIR 0 Grand fir GP GRAVEL PIT 0 Gravel pit LP LODGEPOLE PN 0 Lodgepole pine MFP MAR FOR PROD 0 Marginal forest productivity NA N/A 0 Not applicable NC NON-COMMERC 0 Non-commercial ND NO DATA 0 No data PP PONDEROSA PN 0 Ponderosa pine RA RED ALDER 0 Red alder WAT WATER 0 Water WH W HEMLOCK 0 Western hemlock WL W LARCH 0 Western larch WP W WHITE PINE 0 Western white pine ITEM: SITE.INDEX.SIDE TITLE: Indicates 100 yr or 50 yr soil site index FORMAT: INPUT OUTPUT DATA DECIMAL ARRAY ARRAY WIDTH WIDTH TYPE PLACES OCCUR. INDEX ------------------------------------------------- 1 1 C 0 0 0 CODE FILE OR VALUE RANGE: SITE.INDEX.SIDE.CODE DESCRIPTION: Code used to indicate whether 100 year or 50 year site index tables are used to calculate the site index of a soil type. Note that some site indexes for "eastside" soils are based on the 50 year index table. SITE.INDEX.SIDE Indicates 100 yr or 50 yr soil site index CODE FILE SITE.INDEX.SIDE.CODE IS NOT USED BY OTHER ITEMS CODE MAP/REPORT MAP CODE DESCRIPTION LABEL SYMB --------- ------------ ---- -------------------------------------------------- E 100 YR SITE 0 Soil site index based on 100 year table W 50 YR SITE 0 Soil site index based on 50 year table------------------------------------------------------------------

  9. d

    Data from: Model Input and Output for Hydrologic Simulations of the...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Model Input and Output for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions [Dataset]. https://catalog.data.gov/dataset/model-input-and-output-for-hydrologic-simulations-of-the-southeastern-united-states-for-hi
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Southeastern United States, United States
    Description

    This data release contains inputs for and outputs from hydrologic simulations of the southeastern U.S. using the Monthly Water Balance Model, the Precipitation Runoff Modeling System (PRMS), and statistically-based methods. These simulations were developed to provide estimates of water availability and statistics of streamflow for historical and potential future conditions for an area of approximately 1.16 million square miles. These model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2019); they include four types of data: 1) model input parameters, 2) model output statistics, 3) GIS files of the model hydrologic response units and stream segments, and 4) statistically-based streamflow estimates for headwater watersheds. LaFontaine, J.H., Hart, R.M., Hay, L.E., Farmer, W.H., Bock, A.R., Viger, R.J., Markstrom, S.L., Regan, R.S., and Driscoll, J.M., 2019, Simulation of Water Availability in the Southeastern United States for Historical and Potential Future Climate and Land-Cover Conditions: U.S. Geological Survey Scientific Investigations Report, 2019-5039, 83 p., https://doi.org/10.3133/sir20195039.

  10. w

    Unpublished Digital Surficial Geologic-GIS Map of Gateway National...

    • data.wu.ac.at
    • catalog.data.gov
    • +1more
    api, zip
    Updated Sep 22, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2016). Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York (NPS, GRD, GRI, GATE, GWSF digital map) adapted from a New Jersey Geological Survey Digital Geodata Series map by Pristas, R. P. (2007) and a New York State Museum Map and Chart Series map by Cadwell, D.H., Connally, G.G., Dineen, R.J., Fleisher, P.J., Fuller, M.L., Sirkin, L., and Wiles, G.C. (1999) [Dataset]. https://data.wu.ac.at/schema/data_gov/NTI0MzdmZGYtNzVlMy00OThkLWI5ZmUtNTlhYmNjMmE3MzUw
    Explore at:
    api, zipAvailable download formats
    Dataset updated
    Sep 22, 2016
    Dataset provided by
    Department of the Interior
    Area covered
    45980d43d1205414c58a9fd7fbc4f044ba4d6c7c, New York
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gwsf_geology.gdb), a 10.1 ArcMap (.MXD) map document (gwsf_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gwsf_gis_readme.pdf). Please read the gwsf_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and New York State Museum. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gwsf_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gwsf_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  11. A

    Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • data.amerigeoss.org
    api, zip
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from an American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://data.amerigeoss.org/gl/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map-1969
    Explore at:
    api, zipAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    Area covered
    Santa Rosa Island, California
    Description

    The Unpublished Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (sris_geology.gdb), a 10.1 ArcMap (.MXD) map document (sris_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/sris_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.

  12. A

    Digital Geologic-GIS Map of Santa Cruz Island, California (NPS, GRD, GRI,...

    • data.amerigeoss.org
    api, zip
    Updated Sep 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2017). Digital Geologic-GIS Map of Santa Cruz Island, California (NPS, GRD, GRI, CHIS, SCIS digital map) adapted from an American Association of Petroleum Geologists Field Trip Guidebook map by the University of California, Santa Barbara Geological Survey (1969) [Dataset]. https://data.amerigeoss.org/ca/dataset/digital-geologic-gis-map-of-santa-cruz-island-california-nps-grd-gri-chis-scis-digital-map-1969
    Explore at:
    zip, apiAvailable download formats
    Dataset updated
    Sep 27, 2017
    Dataset provided by
    United States
    Area covered
    Santa Cruz Island, California
    Description

    The Unpublished Digital Geologic-GIS Map of Santa Cruz Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (scis_geology.gdb), a 10.1 ArcMap (.MXD) map document (scis_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (scis_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/scis_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.

  13. Landscape Change Monitoring System (LCMS) Alaska Annual Change

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Alaska Annual Change [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_Southeast_Alaska_Annual_Change_Image_Service_/25974103
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It supplies LCMS Change classes for each year that are a refinement of the modeled LCMS Change classes (Slow Loss, Fast Loss, and Gain) and provide information on the cause of landscape change. See additional information about Change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  14. d

    Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS,...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS, GRD, GRI, MORA, MORA_geology digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Fiske, Hopson and Waters (1964) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-mount-rainier-national-park-washington-nps-grd-gri-mora-mora-g
    Explore at:
    57, 33Available download formats
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Mount Rainier
    Description

    The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.

  15. d

    Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona...

    • datasets.ai
    33, 57
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona (NPS, GRD, GRI, NAVA, NAVA digital map) adapted from a U.S. Geological Survey Professional Paper map by Cooley, Harshbarger, Akers, Hardt and Hicks (1969) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-navajo-national-monument-and-vicinity-arizona-nps-grd-gri-nava
    Explore at:
    33, 57Available download formats
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Arizona
    Description

    The Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.

  16. A

    NREL GIS Data: Wisconsin High Resolution Wind Resource

    • data.amerigeoss.org
    zip
    Updated Jul 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). NREL GIS Data: Wisconsin High Resolution Wind Resource [Dataset]. https://data.amerigeoss.org/es/dataset/nrel-gis-data-wisconsin-high-resolution-wind-resource
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 26, 2019
    Dataset provided by
    United States[old]
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Wisconsin
    Description

    Abstract: Annual average wind resource potential for Wisconsin at a 50 meter height.

    Purpose: Provide information on the wind resource development potential in Wisconsin.

    Supplemental Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects.

    Other Citation Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants.

    License Info

    This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  17. MAP SYMBOLOGY

    • public-nps.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). MAP SYMBOLOGY [Dataset]. https://public-nps.opendata.arcgis.com/datasets/map-symbology
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset authored and provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Description

    The Digital Geologic Units of Great Smoky Mountains National Park and Vicinity, Tennessee and North Carolina consists of geologic units mapped as area (polygon) features. The data were completed as a component of the Geologic Resources Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). The data were captured, grouped and attributed as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.3.1. (available at: https://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The data layer is available as a feature class in a 9.1 personal geodatabase (grsm_geology.mdb). Attributed geologic contact lines that define the geologic unit polygons are present within the Geologic Contacts (GRSMGLGA) data layer. The Geologic Units (GRSMGLG) GIS data layer is also available as a coverage export (.E00) file (GRSMGLG.E00), and as a shapefile (.SHP) file (GRSMGLG.SHP). Each GIS data format has an ArcGIS 9.1 layer (.LYR) file (GRSMGLG_GDB.LYR (geodatabase feature class), GRSMGLG_COV.LYR (coverage), GRSMGLG_SHP.LYR (shapefile) with map symbology that is included with the GIS data. See the Distribution Information section for additional information on data acquisition. The GIS data projection is NAD83, UTM Zone 17N. That data is within the area of interest of Great Smoky Mountains National Park. This dataset is just one component of the Digital Geologic Map of Great Smoky Mountains National Park and Vicinity, Tennessee and North Carolina. The data layers (feature classes) that comprise the Digital Geologic Map of Great Smoky Mountains National Park and Vicinity, Tennessee and North Carolina include: GRSMAML (Alteration and Metamorphic Lines), GRSMATD (Geologic Attitude and Observation Points), GRSMFLD (Folds), GRSMFLT (Faults), GRSMGLG (Geologic Units), GRSMGLGA (Geologic Contacts), GRSMGPT (Point Geologic Features), GRSMGSL (Geologic Sample Localities), GRSMMIN (Mine Point Features), GRSMSEC (Cross Section Lines), GRSMSUR (Surficial Geologic Units), GRSMSURA (Surficial Contacts) and GRSMSYM (Fault Symbology). There are three additional ancillary map components, the Geologic Unit Information (GRSMGLG1) Table, the Source Map Information (GRSMMAP) Table and the Map Help File (GRSM_GEOLOGY.HLP). Refer to the NPS GRE Geology-GIS Geodatabase Data Model v. 1.3.1 (available at: https://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm) for detailed data layer (feature class) and table specifications including attribute field parameters, definitions and domains, and implemented topology rules and relationship classes.The corresponding Integration of Resource Management Applications (IRMA) NPS Data Store reference is Great Smoky Mountains National Park Geology.

  18. n

    GIS data Town of Young Floodplain Risk Management Study and Plan

    • flooddata.ses.nsw.gov.au
    • data.nsw.gov.au
    Updated May 1, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). GIS data Town of Young Floodplain Risk Management Study and Plan [Dataset]. https://flooddata.ses.nsw.gov.au/dataset/gis-data-town-of-young-floodplain-risk-management-study-and-plan
    Explore at:
    Dataset updated
    May 1, 2014
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All data associated with the Town of Young Floodplain Risk Management Study and Plan. GIS Data Outputs, Hydraulics, Hydrology, Reporting, Survey. Data and Resources Data associated with Town of Young Floodplain Risk Management Study and PlanZIP (11.5 GB) All Data and GIS data associated with the Town of Young Floodplain Risk Management Study and Plan. Explore More information Download More info Creative Commons Attribution 4.0 International Public License By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License (“Public License”). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. Section 1 – Definitions. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license. Licensor means the individual(s) or entity(ies) granting rights under this Public License. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning. Section 2 – Scope. License grant. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to: reproduce and Share the Licensed Material, in whole or in part; and produce, reproduce, and Share Adapted Material. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions. Term. The term of this Public License is specified in Section 6(a). Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material. Downstream recipients. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A):info:. Other rights. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise. Patent and trademark rights are not licensed under this Public License. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties. Section 3 – License Conditions. Your exercise of the Licensed Rights is expressly made subject to the following conditions. Attribution. If You Share the Licensed Material (including in modified form), You must: retain the following if it is supplied by the Licensor with the Licensed Material: identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated); a copyright notice; a notice that refers to this Public License; a notice that refers to the disclaimer of warranties; a URI or hyperlink to the Licensed Material to the extent reasonably practicable; indicate if You modified the Licensed Material and retain an indication of any previous modifications; and indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable. If You Share Adapted Material You produce, the Adapter\'s License You apply must not prevent recipients of the Adapted Material from complying with this Public License. Section 4 – Sui Generis Database Rights. Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database; if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database. For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights. Section 5 – Disclaimer of Warranties and Limitation of Liability. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this

  19. g

    Model Input and Output for Hydrologic Simulations of the...

    • gimi9.com
    Updated Nov 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_model-input-and-output-for-hydrologic-simulations-of-the-apalachicola-chattahoochee-flint-/
    Explore at:
    Dataset updated
    Nov 3, 2017
    Area covered
    Apalachicola
    Description

    This data release contains inputs for and outputs from hydrologic simulations of the Apalachicola-Chattahoochee-Flint River Basin (ACFB) in the southeastern U.S. using the Precipitation Runoff Modeling System (PRMS). Seven hydrologic models, one coarse-resolution model for the entire ACFB and six fine-resolution models of tributary sub-basins. These simulations were developed to provide estimates of water availability and statistics of streamflow. These PRMS model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2017); they include three types of data: 1) PRMS input parameter and data files, 2) PRMS output data files, and 3) GIS files of the model hydrologic response units and stream segments.

  20. NREL GIS Data: U.S. Atlantic Coast Offshore Windspeed 90m Height High...

    • data.wu.ac.at
    zip
    Updated Aug 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy (2017). NREL GIS Data: U.S. Atlantic Coast Offshore Windspeed 90m Height High Resolution [Dataset]. https://data.wu.ac.at/schema/data_gov/MzYyYTg0ZDktNjM1YS00ZGJmLWFlOWYtNDZkY2ViZTQ3NjZl
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2017
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. The data provide an estimate of annual average wind speed at 90 meter height above surface for specific offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States.

    These data were produced in cooperation with U.S. Department of Energy, and have been validated by NREL. To download state wind resource maps, visit Wind Powering America.

    In order to ensure the downloadable shapefile is current, please compare the date updated on this page to the last updated date on the NREL GIS Wind Data webpage.

    License Info

    DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS

LANDISVIEW 2.0 : Free Spatial Data Analysis

TAM_LVB1_2.0

Explore at:
Dataset updated
Mar 5, 2021
Time period covered
Jan 1, 1970 - Present
Description

LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

Search
Clear search
Close search
Google apps
Main menu